CC without spin-orbit couplings
CC without spin-orbit couplings can be run by omitting SOC integrals in xuanyuan and adding lscalar in CCSDSO. CCSD(T) can be enabled by setting itriple to 1.
$COMPASS Title CH2O+ Molecule test run Basis 6-31g Geometry H 0. 0.0 0.0 F 1. 0.0 0.0 END geometry $END $XUANYUAN scalar heff 0 # non-relativistic $END $SCF RHF charge 0 spin 1 THRESHCONV 1.d-14 1.d-10 $END $TRAINT orbi hforb $END $CCSDSO itriple 1 ifdebug 0 maxTcyc 100 threshT 12 lscalar $END
Results:
T1 Diagnostic = 8.9274007366236547E-003
E(SCF) = -99.977636678624
E(CCSD) = -100.113388640000
SO-CCSD calculation finish at: Mon Dec 7 13:26:53 2015
Total cpu time for CCSD calculation : 0.0727 seconds
0.07 seconds walltime passed
SCF ENERGY: -99.977636678624
CCSD ENERGY: -0.135751961376 -100.113388640000
CCSD(T) calculation starts!
E4T (T(CCSD)) = -0.000922841190
E5ST = 0.000159516908
E(T(CCSD)) = -0.000763324282
E(CCSD + T(CCSD)) = -100.114151964282
CCSD(T) calculation finish at: Mon Dec 7 13:26:53 2015
Total cpu time for triple calculation : 0.0197 seconds
0.02 seconds walltime passed
[ccsdso_calculation]
Escf = -99.9776366786
Eccsd = -100.1133886400 Ecorr= -0.1357519614
Eccsd(t)= -100.1141519643 Ecorr= -0.1365152857Including scalar relativistic effects via sf-X2C:
$XUANYUAN scalar heff 3 # sf-x2c $END
Results:
[ccsdso_calculation] Escf = -100.0586781599 Eccsd = -100.1944404677 Ecorr= -0.1357623078 Eccsd(t)= -100.1952071862 Ecorr= -0.1365290263
CC with SOC
In fact, there are several options for scalar and spin-orbit parts. They are defined by the integer values of the keywords heff (for scalar part) and hsoc (for SOC part). In the input one could use them in the xuanyuan section for integrals, e.g.,
$XUANYUAN scalar heff 3 soint hsoc 2 $END
The followings are some useful options for heff: 1. heff=0: NR
2. heff=3: sf-X2C (recommended)
3. heff=5 or 6: sf-X2C + (some spin-free parts originated from high-order SOC: 5 for Wso*Wso like terms, 6 for third order).
For the keyword hsoc, there are:
1. hsoc=0: SO1e (only 1e part)
2. hsoc=1: SOMF (mean-field)
3. hsoc=2: SOMF-1c (one center approximation, recommended)
The most practical one is heff=3, hsoc=2, which is used in computing the fine-structure splittings in the paper. One might want to try the 1e-part and SOMF (hsoc=0,1) with heff=0, which gives Breit-Pauli form of SOC, to see whether the similar results can be obtained in other program.
Example:
$COMPASS
Title
CH2O+ Molecule test run
Basis
6-31g
Geometry
H 0. 0.0 0.0
F 1. 0.0 0.0
END geometry
$END
$XUANYUAN
scalar
heff
3
soint
hsoc
2
$END
$SCF
RHF
charge
0
spin
1
THRESHCONV
1.d-14 1.d-10
$END
$TRAINT
orbi
hforb
$END
$CCSDSO
itriple
1
ifdebug
0
maxTcyc
100
threshT
12
memmega
20
$ENDResults:
[ccsdso_calculation] Escf = -100.0586781599 Eccsd = -100.1944443737 Ecorr= -0.1357662138 Eccsd(t)= -100.1952110890 Ecorr= -0.1365329291