Size: 3662
Comment:
|
← Revision 16 as of 2015-12-07 18:45:47 ⇥
Size: 3570
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 79: | Line 79: |
Including scalar relativistic effects via sf-X2C: {{{ $XUANYUAN scalar heff 3 # sf-x2c $END }}} Results: {{{ [ccsdso_calculation] Escf = -100.0586781599 Eccsd = -100.1944404677 Ecorr= -0.1357623078 Eccsd(t)= -100.1952071862 Ecorr= -0.1365290263 }}} |
|
Line 84: | Line 105: |
Line 85: | Line 107: |
$XUANYUAN | |
Line 91: | Line 114: |
$END | |
Line 95: | Line 119: |
Line 96: | Line 121: |
Line 98: | Line 124: |
For the keyword ''hsoc''', there are: | For the keyword '''hsoc''', there are: |
Line 101: | Line 127: |
Line 102: | Line 129: |
Line 108: | Line 136: |
Example: | |
Line 110: | Line 139: |
$COMPASS Title CH2O+ Molecule test run Basis |
$COMPASS Title CH2O+ Molecule test run Basis |
Line 115: | Line 145: |
Geometry H 0. 0.0 0.0 F 1. 0.0 0.0 END geometry $END |
Geometry H 0. 0.0 0.0 F 1. 0.0 0.0 END geometry $END |
Line 124: | Line 154: |
0 # non-relativistic | 3 soint hsoc 2 |
Line 151: | Line 184: |
lscalar | memmega 20 |
Line 153: | Line 187: |
Line 154: | Line 189: |
Line 157: | Line 193: |
SCF ENERGY: -100.058678159913 CCSD ENERGY: -0.135766213771 -100.194444373685 CCSD(T) calculation starts! E4T (T(CCSD)) = -0.000927436424 E5ST = 0.000160721112 E(T(CCSD)) = -0.000766715313 E(CCSD + T(CCSD)) = -100.195211088997 CCSD(T) calculation finish at: Mon Dec 7 13:36:30 2015 Total cpu time for triple calculation : 0.0200 seconds 0.02 seconds walltime passed |
CC without spin-orbit couplings
CC without spin-orbit couplings can be run by omitting SOC integrals in xuanyuan and adding lscalar in CCSDSO. CCSD(T) can be enabled by setting itriple to 1.
$COMPASS Title CH2O+ Molecule test run Basis 6-31g Geometry H 0. 0.0 0.0 F 1. 0.0 0.0 END geometry $END $XUANYUAN scalar heff 0 # non-relativistic $END $SCF RHF charge 0 spin 1 THRESHCONV 1.d-14 1.d-10 $END $TRAINT orbi hforb $END $CCSDSO itriple 1 ifdebug 0 maxTcyc 100 threshT 12 lscalar $END
Results:
T1 Diagnostic = 8.9274007366236547E-003 E(SCF) = -99.977636678624 E(CCSD) = -100.113388640000 SO-CCSD calculation finish at: Mon Dec 7 13:26:53 2015 Total cpu time for CCSD calculation : 0.0727 seconds 0.07 seconds walltime passed SCF ENERGY: -99.977636678624 CCSD ENERGY: -0.135751961376 -100.113388640000 CCSD(T) calculation starts! E4T (T(CCSD)) = -0.000922841190 E5ST = 0.000159516908 E(T(CCSD)) = -0.000763324282 E(CCSD + T(CCSD)) = -100.114151964282 CCSD(T) calculation finish at: Mon Dec 7 13:26:53 2015 Total cpu time for triple calculation : 0.0197 seconds 0.02 seconds walltime passed [ccsdso_calculation] Escf = -99.9776366786 Eccsd = -100.1133886400 Ecorr= -0.1357519614 Eccsd(t)= -100.1141519643 Ecorr= -0.1365152857
Including scalar relativistic effects via sf-X2C:
$XUANYUAN scalar heff 3 # sf-x2c $END
Results:
[ccsdso_calculation] Escf = -100.0586781599 Eccsd = -100.1944404677 Ecorr= -0.1357623078 Eccsd(t)= -100.1952071862 Ecorr= -0.1365290263
CC with SOC
In fact, there are several options for scalar and spin-orbit parts. They are defined by the integer values of the keywords heff (for scalar part) and hsoc (for SOC part). In the input one could use them in the xuanyuan section for integrals, e.g.,
$XUANYUAN scalar heff 3 soint hsoc 2 $END
The followings are some useful options for heff: 1. heff=0: NR
2. heff=3: sf-X2C (recommended)
3. heff=5 or 6: sf-X2C + (some spin-free parts originated from high-order SOC: 5 for Wso*Wso like terms, 6 for third order).
For the keyword hsoc, there are:
1. hsoc=0: SO1e (only 1e part)
2. hsoc=1: SOMF (mean-field)
3. hsoc=2: SOMF-1c (one center approximation, recommended)
The most practical one is heff=3, hsoc=2, which is used in computing the fine-structure splittings in the paper. One might want to try the 1e-part and SOMF (hsoc=0,1) with heff=0, which gives Breit-Pauli form of SOC, to see whether the similar results can be obtained in other program.
Example:
$COMPASS Title CH2O+ Molecule test run Basis 6-31g Geometry H 0. 0.0 0.0 F 1. 0.0 0.0 END geometry $END $XUANYUAN scalar heff 3 soint hsoc 2 $END $SCF RHF charge 0 spin 1 THRESHCONV 1.d-14 1.d-10 $END $TRAINT orbi hforb $END $CCSDSO itriple 1 ifdebug 0 maxTcyc 100 threshT 12 memmega 20 $END
Results:
[ccsdso_calculation] Escf = -100.0586781599 Eccsd = -100.1944443737 Ecorr= -0.1357662138 Eccsd(t)= -100.1952110890 Ecorr= -0.1365329291