welcome: please sign in

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment
What is the Admin password?

Revision 13 as of 2014-09-28 04:07:11

location: Response properties based on response functions

Response properties based on linear and quadratic response functions

All the following tests can be found in bdf-pkg/tests/input/resp2014/2_rsp

Properties from Linear Response Functions (LRF)

Ground-state polarizabilities: 1_polar_h2o/polar_h2o.inp

Frequency-dependent polarizability of H2O - <<z;z>>(wB):

$COMPASS
TITLE
 h2o 
BASIS
 sto-3g
GEOMETRY
 O       0.00000000     -0.22490589      0.00000000
 H       1.45234993      0.89962357      0.00000000
 H      -1.45234993      0.89962357      0.00000000
end geometry
units
bohr
$END 

$XUANYUAN
$END

$SCF
RHF
charge
0 
spin
1
THRESHCONV
1.d-10 1.d-8
guess
hcore
$end

$resp
LINE
POLA
AOPER
 DIP-Z
BOPER
 DIP-Z
BFREQ
 3
 0.0 1.0 2.0 
#reduced
$end

2nd SOC correction to ground-state energy: 1_polar_h2o/soc_hf.inp

<<Hso;Hso>>(wB=0) represents 2nd SOC SOC correction to ground-state energy. The specific form of SOC operator can be chosen in the xuanyuan part. Here, we use the sf-X2C/SOMF(1c) operator combined with the ANO-RCC-VTZP basis:

$COMPASS
TITLE
 h2o
BASIS
 ano-rcc-vtzp
GEOMETRY
 F 0. 0. 0.
 H 0. 0. 1.732549
end geometry
$END 

$XUANYUAN
scalar
heff
3
soint
hsoc
2
$END

$SCF
RHF
charge
0 #-2
spin
1
THRESHCONV
1.d-10 1.d-8
guess
hcore
$end

$resp
LINE
POLA
AOPER
 HSO-Y
BOPER
 HSO-Y
BFREQ
 1
 0.0 
#reduced
$end

Transition moment between ground state and excited state: <0|A|ex>

This part has already been contained in the TD-DFT module for the transition dipole moment between the ground and excited states. Maybe in future there will be a subroutine for other kind of properties.

Properties from Quadratic Response Functions (QRF)

Ground-state Hyperpolarizabilities: 2_hyper_h2o

Hyperpolarizability <<z;x,x>>(wB,wC) of H2O:

$COMPASS 
Title
 h2o
Basis
 sto-3g
Geometry
O .0000000000 -.2249058930 .0000000000
H 1.4523499293 .8996235720 .0000000000
H -1.4523499293 .8996235720 .0000000000
End geometry
units
bohr
$END

$xuanyuan
$end

$scf
RKS
DFT
BHHLYP
charge
0 #-2
spin
1
THRESHCONV
1.d-14 1.d-12
guess
hcore
$end

$resp
iprt
0
QUAD
HYPE
AOPER
 DIP-Z
BOPER
 DIP-X
COPER
 DIP-X
# ffield
#EFG-ZZ
BFREQ
 1
 0.3 #0.1 #2.0
CFREQ
 1
 1.0 #0.1 #2.0 # This gives SHG
#reduced
$end

Two-photo absorption from single residues of QRF: 3_single_h2o

<S|r|S'> from double residues of QRF: 4_double_h2o_dpl

Phosphorescence from single residues of QRF: 5_phos_h2o

<T|r|T'> from single residues of QRF: 6_t_h2o_dpl

<T|Hso|T'> from double residues of QRF: 7_t_h2o_hso