welcome: please sign in
location: Diff for "tddft"
Differences between revisions 34 and 35
Revision 34 as of 2014-11-26 00:55:33
Size: 18615
Editor: 124
Comment:
Revision 35 as of 2014-11-26 01:30:28
Size: 18633
Editor: 124
Comment:
Deletions are marked like this. Additions are marked like this.
Line 224: Line 224:
Unused.
Line 246: Line 247:
Unused.

tddft

Time dependent DFT/HF calculation. Support Full TDDFT, TDA and RPA.

Quick guides

The following examples give the minimal inputs for starting TD-DFT calculations.

Closed-shell Systems : R-TD-DFT

This gives a R-TD-DFT (imethod=1,itda=0) for singlet-singlet (isf=0) transitions using Davidson iterative diagonalization (idiag=1). In each irreducible representations, the lowest 10 states are calculated.

$TDDFT
IMETHOD 
 1
ISF
 0
ITDA
 0
IDIAG
 1
iexit
10
$END

The algorithm used in TD-DFT is the same as in the ground state calculations. If direct SCF is used.

$xuanyuan

---- /!\ '''Edit conflict - your version:''' ----

---- /!\ '''End of edit conflict''' ----
directhf
$end
...

then TD-DFT also uses direct algorithm. The memory for JK operators can be changed by using MemJKOP.

$TDDFT
...
MemJKOP
 2048
...
$END

If the ERI is stored, then integral transformation should be carried out before TDDFT

$TRAINT
TDDFT (or UTDDFT for RO/U case)
ORBI
hforb
$END

Open-shell Systems : U-TD-DFT and spin-adapted TD-DFT for spin-conserving excitations

Using a UKS reference in SCF, the input for U-TD-DFT reads:

$TDDFT
IMETHOD 
 2
ISF
 0
...
$END

Using a ROKS reference in SCF, the input for Spin-adapted TD-DFT (X-TD-DFT) can be set in two ways.

One uses U-TD-DFT solver to solve the X-TD-DFT in spin-orbit basis:

$TDDFT
IMETHOD 
 2
ISF
 0
...
icorrect
1
itest
1
itrans
1
$END

The option itrans will transform the eigenvector in CV(aa),CV(bb) basis into CV(0) and CV(1) basis.

The other one uses the original spin-adapted TD-DFT solver to solve the X-TD-DFT in spin-tensor basis:

$TDDFT
imethod
3
isf
0
...
itest
1
icorrect
1
$END

These two ways give exactly the same excitation energies. The only different is the representation if "itrans" is not used.

Open-shell Systems : Spin-flip TD-DFT for spin-flip excitations

Although SF-TD-DFT is possible by using isf=3, which calculate a->b and b->a excitation at the same time, however, the TDA version is preferred. This allows separate calculations of a->b and b->a types of excitations.

Using a UKS/ROKS reference in SCF, the input for spin-flip TDA (flip-up) reads:

$TDDFT
IMETHOD 
 2
ISF
 1
...
ialda
 2
$END

The keyword ialda controls the spin-flip kernel when using GGA functionals in ground state calculations. The option "ialda=2" means a ALDA0 type approximation is used, which always gives numerical stable results.

Flip-down excitations can be calculated by choosing isf=-1.

$TDDFT
IMETHOD 
 2
ISF
 -1
...
ialda
 2
$END

There are spin-adapted versions of flip-down excitations with imethod=3, but they are not thoroughly tested and to be explored in future.

General keywords

imethod

isf

itda

idrpa

ispa

ialda

thrdab

itest

icorrect

itrans

iro

icv

ioo

iksf

iact

elw

eup

idiag

ndiag

aokxc

States specification

iext

next

Save eigenvectors

istore

Integer: specify the file no. to store TDDFT information

lefteig

By default, in TD-DFT the left eigenvector X-Y is also stored.

output eigenvector control

nprt

cthrd

Property evaluation

isoc

=1, Only work for closed-shell case (NOT recommended!)

=2, General SOC state interaction

=3, just print SOC matrix elements between two spin-free states

irsf

Unused.

irso

insf

inso

imatsoc

Define SOC matrices need to be calculated. Input format looks like

$tddft
imatsoc
.....
  2
0 1 1 2 1 1
2 1 1 2 1 1
.....
$end

In this input, 2 means two set of SOC matrices will be calculate. One set is SOC between state "0 1 1" and "2 1 1". Here, the state is specified by "2S+1 Symm iRoot". "2S+1" is spin multiplet of a state. "Smmy" is symmetry of this state(irreducible irreps of this state). The last "1" means 1st root of the state |2S+1,Symm>. Therefore, the SOC matrices of <011|HSOC|211> (coupling between 1st singlet state and 1st triplet state) are calculated. Notice, the total number of matrix element is "1*3" because of spin multiplets of these states.

imatrsf

Unused.

imatrso

Define transition dipole need to be printed between to states. Input format looks like(notice we omit other input in TDDFT module)

$TDDFT
...
irso
1
imatrso
5
1 1
1 2
1 3
1 4
1 5
...
$END

Here, "irso" is set to 1 to enable transition dipole moment calculation. Then, "imatros" is specified to define transition dipole moments need to be printed. The number "5" require transition dipoles between 5-pairs of states to be print. The following 5 lines define which pairs will be printed. Here, we require transition dipoles between the ground state and five low-lying states are printed.

imatnsf

ifgs

nfiles

isgn

ivo

idiag

TD-DFT/SOC can use Davidson's algorithm also, along with a specification for the no. of states by iexit.

iact

=1, allows to use active space specification for the projected active-orbital SOC Hamiltonian (P*HSOC*P), eup can be specified in (eV) to give a cut off to define active physically interested excited states.

Stability analysis

isab

isave

memory control

memjkop

TD-DFT/SOC

SOC计算的输入文件中以$section name ... $end符号为划分分为6段:

$compass 为基组和坐标控制(如果要计算其他化合物,选用其他基组,可修改这一段);

$xuanyuan 为积分控制,基本不需要改动,除非需要使用cam-b3lyp这段要加入两行:RS和0.33d0,控制计算新的积分;   

$scf为计算方法控制,可选用不同泛函;

$tddft isf=0 ... 这一段(isf=0)表示计算singlet

$tddft isf=1 ... 计算triplet

$tddft isoc=2 ...根据前面两个计算的结果来计算soc state interaction,imatsoc为控制打印旋轨耦合矩阵元,格式如下:

        IMATSOC
        n 
        fileA symA stateA fileB symB stateB 
        fileA' symA' stateA' fileB' symB' stateB' 
        ...
        ...

其中,IMATSOC下参数说明如下:

1. "n" - 代表要打印"几个旋轨耦合矩阵元<A|hso|B>",接着后面(fileA symA stateA fileB symB stateB等)为要打印矩阵元两个态的描述,共n行。

2. 每一行"fileA symA stateA fileB symB stateB"代表一个矩阵元<A|hso|B>,每个态由(file,sym,state)3个量表示。

3. 整数file - 表示前面第几个tddft计算的文件。

4. 整数sym - 表示该计算中第几个不可约表示,这取决于分子的对称性。可以从“SCF段”输出的occupation出查看不可约表示顺序。

5. 整数state - 表示该不可约表示里的第几个态,这取决于前面"TD-DFT段"计算出的激发态。

特殊说明:

1. 计算必须按照isf=0,isf=1的顺序进行。

2. 基态用(0,0,0)表示。

例子:

输入文件中"0,0,0,2,1,1"表示基态(000)和file2即triplet,sym=1的第一个态(即211对应1T1,因为此时对称性为C1)之间的旋轨耦合矩阵元。

Some common questions about SOC

Example

$COMPASS 
Title
 ir1
Basis
 IRCOMPLEX
Geometry
 Ir      -0.0117154745  0.02136826         -0.1871622466
 C       -1.590674169   0.7736105591       0.850482009
 C       -4.0103593084  1.6631710744       2.0881698872
 C       -1.587030516   1.6064254297       1.9846531563
 C       -2.8754743453  0.4162567381       0.3762778017
 C       -4.0684588604  0.8406678872       0.9653728357
 C       -2.7652566303  2.0433988261       2.5945234724
 H       -0.633533598   1.9127046365       2.4024890794
 H       -5.031807216   0.5389051931       0.5644872718
 H       -2.7118027246  2.6839610147       3.4712663621
 H       -4.9285536031  2.0014173162       2.5588819363
 C       1.4053272337   1.0109349589       0.8613594531
 C       3.3836289249   2.6234305864       2.1354680771
 C       2.0771460677   0.5800974992       2.0211645669
 C       1.7631262545   2.2970140474       0.3585152663
 C       2.7411852479   3.0844966855       0.9939992732
 C       3.044957901    1.3650101996       2.6469305081
 H       1.8305785647   -0.3881315485      2.4444240781
 H       3.0042061929   4.0630294704       0.6010854425
 H       3.5407187868   0.9959817385       3.5420383099
 H       4.1379887938   3.2338708527       2.6233130653
 C       0.1111675725   -1.7119838156      0.8795182027
 C       0.5294631611   -4.2465845213      2.136544371
 C       1.0417183334   -2.6652412426      0.4024936912
 C       -0.6004107662  -2.1019903883      2.028797446
 C       -0.4006210626  -3.3384592866      2.6477946425
 C       1.2608503358   -3.9079720636      1.0002003463
 H       -1.3244348019  -1.413608967       2.4531282601
 H       -0.9731808696  -3.5946754614      3.5357463104
 H       1.9890357565   -4.6057356294      0.596753782
 H       0.6876544671   -5.2085686031      2.6147222734
 N       -1.7055918832  -0.7893527004      -1.3058124454
 C       -1.9722242221  -1.5767164653      -2.3518797181
 C       -3.3612772292  -1.7339951323      -2.5010242321
 C       -3.9194938069  -0.9920736156      -1.4729787184
 N       -2.8999954385  -0.434228237       -0.7703095731
 N       1.5150714233   -1.0583114657      -1.2825131804
 C       2.3138081406   -0.9142123699      -2.3433358371
 C       3.1082799478   -2.0614459074      -2.5127910698
 C       2.7399679653   -2.9098550697      -1.4816601802
 N       1.779892419    -2.2802990117      -0.7566347846
 H       -1.1601491745  -1.9907288667      -2.9313421992
 H       3.089224611    -3.8952971699      -1.2184247348
 H       3.8501674705   -2.2464169166      -3.2743336863
 H       -3.8863865729  -2.3105313491      -3.2470045506
 H       -4.9492341453  -0.8290099882      -1.1983109053
 H       2.2814545468   -0.0015798294      -2.9198044757
 C       0.5167706643   4.2876200227       -2.6332627231
 C       -0.4153270812  3.3663568698       -3.1195481682
 C       -0.5686406908  2.1688169354       -2.4341135463
 N       0.1409383672   1.8631654694       -1.3352631181
 C       1.05542065     2.7471949823       -0.8428699526
 C       1.2493629941   3.9769776219       -1.4963443658
 H       0.6676353447   5.2385692731       -3.1359337322
 H       -1.011339893   3.5685529446       -4.0026032407
 H       -1.276466123   1.413706092        -2.7596936709
 H       1.9731120675   4.6831024371       -1.1074561222
End geometry
GROUP
C(1)
Skeleton
$END

$XUANYUAN
scalar
heff
3
soint
hsoc
2
Direct
Schwarz
$END

$SCF
RKS
DFT functional
 B3lyp
$END

$TDDFT
IMETHOD
 1
ISF
 0
ITDA
 0
IDIAG
 1
istore
 1
iexit
10
AOKXC
MemJKOP
 2048
crit_e
1.d-4
$END

$TDDFT
IMETHOD
 1
ISF
 1
ITDA
 0
IDIAG
 1
istore
 2
iexit
10
AOKXC
MemJKOP
 2048
crit_e
1.d-4
$END

$TDDFT
isoc
2
nfiles
2
ifgs
1
imatsoc
1
0 0 0 2 1 1
$END

Output

SOC-SI results:

 *** List of SOC-SI results ***
 
 Totol No. of States:    41
 
  No.      ExEnergies      f              Dominant Excitations         Esf        dE      Eex(eV)     (cm^-1) 
 
    1      -0.0066 eV   0.0000    99.8%  Spin: |Gs,1>    0-th    A    0.0000   -0.0066    0.0000         0.00
    2       2.5694 eV   0.0000    44.1%  Spin: |S+,2>    1-th    A    2.6425   -0.0731    2.5760     20776.65
    3       2.5727 eV   0.0000    32.8%  Spin: |S+,3>    1-th    A    2.6425   -0.0698    2.5793     20803.69
    4       2.5908 eV   0.0000    31.8%  Spin: |S+,1>    1-th    A    2.6425   -0.0517    2.5974     20949.77
    5       2.7010 eV   0.0000    31.1%  Spin: |So,1>    1-th    A    2.9592   -0.2583    2.7076     21837.87
    6       2.8740 eV   0.0000    19.9%  Spin: |S+,1>    2-th    A    2.9081   -0.0340    2.8806     23233.61
    7       2.8794 eV   0.0000    27.0%  Spin: |S+,2>    2-th    A    2.9081   -0.0287    2.8859     23276.69
    8       2.9589 eV   0.0000    22.8%  Spin: |S+,1>    3-th    A    2.9849   -0.0261    2.9655     23917.99
    9       3.0395 eV   0.0000    26.0%  Spin: |S+,2>    2-th    A    2.9081    0.1314    3.0461     24568.13
   10       3.0631 eV   0.0000    38.7%  Spin: |S+,2>    3-th    A    2.9849    0.0782    3.0697     24758.84
   11       3.0881 eV   0.0000    52.9%  Spin: |So,1>    2-th    A    3.0330    0.0551    3.0947     24960.28
   12       3.1239 eV   0.0000    30.7%  Spin: |So,1>    1-th    A    2.9592    0.1647    3.1305     25249.42
   13       3.1328 eV   0.0000    21.9%  Spin: |S+,2>    5-th    A    3.1710   -0.0382    3.1394     25320.98
   14       3.1334 eV   0.0000    20.5%  Spin: |S+,3>    4-th    A    3.1640   -0.0305    3.1400     25325.94
   15       3.1455 eV   0.0000    33.3%  Spin: |S+,2>    4-th    A    3.1640   -0.0185    3.1521     25423.24
   16       3.1489 eV   0.0000    24.5%  Spin: |S+,2>    5-th    A    3.1710   -0.0221    3.1555     25450.64
   17       3.1546 eV   0.0000    17.0%  Spin: |S+,3>    4-th    A    3.1640   -0.0094    3.1612     25496.52
   18       3.1580 eV   0.0000    34.2%  Spin: |S+,3>    5-th    A    3.1710   -0.0130    3.1646     25524.02
   19       3.1866 eV   0.0000    17.4%  Spin: |S+,2>    7-th    A    3.2865   -0.1000    3.1932     25754.60
   20       3.2140 eV   0.0000    28.2%  Spin: |S+,3>    6-th    A    3.2065    0.0074    3.2206     25975.68
   21       3.2174 eV   0.0000    48.4%  Spin: |S+,2>    6-th    A    3.2065    0.0109    3.2240     26003.33
   22       3.2435 eV   0.0000    38.0%  Spin: |So,1>    3-th    A    3.2231    0.0204    3.2501     26213.63
   23       3.2627 eV   0.0000    20.7%  Spin: |S+,3>    6-th    A    3.2065    0.0562    3.2693     26368.83
   24       3.2725 eV   0.0000    30.0%  Spin: |S+,2>    7-th    A    3.2865   -0.0140    3.2791     26447.54
   25       3.3035 eV   0.0000    45.4%  Spin: |So,1>    3-th    A    3.2231    0.0804    3.3101     26697.85
   26       3.3651 eV   0.0000    23.9%  Spin: |So,1>    4-th    A    3.5132   -0.1481    3.3717     27194.63
   27       3.3945 eV   0.0000    31.5%  Spin: |S+,1>    8-th    A    3.4260   -0.0315    3.4011     27431.99
   28       3.4070 eV   0.0000    31.1%  Spin: |S+,1>    9-th    A    3.4454   -0.0384    3.4136     27532.74
   29       3.4308 eV   0.0000    31.7%  Spin: |S+,3>    8-th    A    3.4260    0.0047    3.4374     27724.20
   30       3.4465 eV   0.0000    19.7%  Spin: |S+,2>    8-th    A    3.4260    0.0204    3.4531     27850.76
   31       3.4518 eV   0.0000    55.5%  Spin: |S+,2>    8-th    A    3.4260    0.0257    3.4583     27893.46
   32       3.4658 eV   0.0000    43.7%  Spin: |S+,2>    9-th    A    3.4454    0.0204    3.4724     28006.99
   33       3.4764 eV   0.0000    24.6%  Spin: |S+,1>   10-th    A    3.4870   -0.0106    3.4830     28092.46
   34       3.5252 eV   0.0000    68.4%  Spin: |S+,2>   10-th    A    3.4870    0.0382    3.5318     28485.50
   35       3.6092 eV   0.0000    49.3%  Spin: |So,1>    4-th    A    3.5132    0.0960    3.6158     29163.42
   36       3.6402 eV   0.0000    60.5%  Spin: |So,1>    6-th    A    3.5920    0.0482    3.6468     29413.12
   37       3.6508 eV   0.0000    48.8%  Spin: |So,1>    5-th    A    3.5648    0.0859    3.6574     29498.52
   38       3.6609 eV   0.0000    47.4%  Spin: |So,1>    7-th    A    3.6206    0.0403    3.6675     29580.42
   39       3.6684 eV   0.0000    43.5%  Spin: |So,1>    8-th    A    3.6288    0.0396    3.6750     29640.60
   40       3.7293 eV   0.0000    83.7%  Spin: |So,1>    9-th    A    3.6898    0.0395    3.7359     30131.95
   41       3.7898 eV   0.0000    90.1%  Spin: |So,1>   10-th    A    3.7487    0.0411    3.7964     30620.26
 
  Print selected matrix elements of [Hsoc] 
 
  <  0  0  0 |Hso|  2  1  1 >
  mi/mj        ReHso(au)           cm^-1               ImHso(au)           cm^-1
   1  1        0.0003219734       70.6650036601        0.0009582030      210.3012602778
   1  2        0.0000000000        0.0000000000       -0.0006544171     -143.6279497862
   1  3        0.0003219734       70.6650036601       -0.0009582030     -210.3012602778
 
 [tddft_soc_final]

说明:

  No.      ExEnergies      f              Dominant Excitations         Esf        dE      Eex(eV)     (cm^-1) 
    1      -0.0066 eV   0.0000    99.8%  Spin: |Gs,1>    0-th    A    0.0000   -0.0066    0.0000         0.00
    2       2.5694 eV   0.0000    44.1%  Spin: |S+,2>    1-th    A    2.6425   -0.0731    2.5760     20776.65  
    ...
   11       3.0881 eV   0.0000    52.9%  Spin: |So,1>    2-th    A    3.0330    0.0551    3.0947     24960.28

这里,ExEnergies列出加入SOC的激发能。Esf为原始不考虑SOC时的激发能。

激发态表示用"Spin: |S,M> n-th sym"来表示,自旋|Gs,1>,空间对称性为sym的第n个态。例如,|Gs,1>代表基态,|So,1>表示总自旋和基态相同的激发态,|S+,2>表示总自旋加1的激发态。M为自旋投影的第几个分量(in total 2S+1)。

Warning: f-振子强度并没有计算,如需计算需要指定imatrsf来计算transition dipole moment !

  <  0  0  0 |Hso|  2  1  1 >
  mi/mj        ReHso(au)           cm^-1               ImHso(au)           cm^-1
   1  1        0.0003219734       70.6650036601        0.0009582030      210.3012602778
   1  2        0.0000000000        0.0000000000       -0.0006544171     -143.6279497862
   1  3        0.0003219734       70.6650036601       -0.0009582030     -210.3012602778

这里计算<S0|Hso|T1>分别给出其实部ReHso和虚部ImHso。因为S0只有一个分量,mi为1。T1(spin S=1)有3个分量(Ms=-1,0,1), mj编号这3个分量。

Warning: 在不同程序结果对比时需要注意:这里给出的时所谓spherical tensor,而不是cartesian tensor,即T1是T_{-1},T_{0},T_{1},不是Tx,Ty,Tz,两者之间存在酉变换。

tddft (last edited 2022-10-28 13:20:58 by bsuo)