welcome: please sign in
location: Diff for "tddft"
Differences between revisions 61 and 62
Revision 61 as of 2014-11-28 12:29:36
Size: 4111
Editor: 162
Comment:
Revision 62 as of 2014-11-28 12:40:49
Size: 4208
Editor: 162
Comment:
Deletions are marked like this. Additions are marked like this.
Line 124: Line 124:
=== imatrsf ===
Transition dipole between Spin-free states. The input is similar to '''imatsoc'''.
Line 125: Line 128:
Define transition dipole need to be printed between to states. Input format looks like(notice we omit other input in TDDFT module) Define transition dipole need to be printed between two SOC-coupled states. Input format looks like(notice we omit other input in TDDFT module)
Line 141: Line 144:

=== imatnsf ===

tddft: time-dependent density functional theory

Time dependent DFT/HF calculation. Support Full TDDFT, TDA and RPA.

Quick guides

The following examples give the minimal inputs for starting TD-DFT calculations.

1. Closed-shell Systems : R-TD-DFT

2. Open-shell Systems : U-TD-DFT and spin-adapted TD-DFT for spin-conserving excitations

3. Open-shell Systems : Spin-flip TD-DFT for spin-flip excitations

4. TD-DFT with SOC

General keywords

imethod

isf

itda

idrpa

ispa

ialda

thrdab

itest

icorrect

itrans

iro

icv

ioo

iksf

iact

elw

eup

idiag

ndiag

aokxc

States specification

iext

next

Save eigenvectors

istore

Integer: specify the file no. to store TDDFT information

lefteig

By default, in TD-DFT the left eigenvector X-Y is also stored.

output eigenvector control

nprt

cthrd

TD-DFT/SOC and Property evaluation

nfiles

No. of TD-DFT calculations to be loaded.

isoc

=1, Only work for closed-shell case (NOT recommended!)

=2, General SOC state interaction

=3, just print SOC matrix elements between two spin-free states (without diagonalization Hsoc).

ifgs

=0, default for not including ground state (GS) in SOC treatment; =1, include GS.

imatsoc

Define SOC matrices need to be calculated. Input format looks like

...
#SCF calculation for the ground state S0. It is a singlet.
$scf
spin
 0
...
$end

#First TDDFT, singlets S0-S9.
$tddft
imethod
 1
isf
 0
iext
 10
....
$end

#Second TDDFT, triplet T1-T10
$tddft
imethod
 1
isf
 1
iext
 10
$end

$tddft
....
imatsoc
  7
0 0 0 2 1 1
0 0 0 2 1 2
1 1 1 2 1 1
1 1 1 2 1 2
1 1 2 2 1 1
1 1 2 2 1 2
2 1 1 2 1 1
2 1 1 2 1 2
$end

In this input, 7 means seven of SOC matrices will be calculate (If the number <0, then ALL possible HSOC mat will be printed !). Here, it is very tricky to specify states:

  • The string "0 0 0" always treat as the ground state.
  • For other states, three numbers "n m n" represent "ith-tddft", "symmetry" and "ithstate" respectively. Therefore, the first matrix element "0 0 0 2 1 1" means SOC matrix of <S0|HSOC|T1>. The third matrix element "1 1 1 2 1 1" means SOC matrix <S1|HSOC|T1>. Here, the first "1" in bra state "1 1 1" means the state from first TDDFT calculation. The second and third "1" in the bra state "1 1 1" means this state has spatial symmetry "1" and is the first excited state.

imatrsf

Transition dipole between Spin-free states. The input is similar to imatsoc.

imatrso

Define transition dipole need to be printed between two SOC-coupled states. Input format looks like(notice we omit other input in TDDFT module)

$TDDFT
...
imatrso
5
1 1
1 2
1 3
1 4
1 5
...
$END

Here, "irso" is set to 1 to enable transition dipole moment calculation. Then, "imatros" is specified to define transition dipole moments need to be printed. The number "5" require transition dipoles between 5-pairs of states to be print. The following 5 lines define which pairs will be printed. Here, we require transition dipoles between the ground state and five low-lying states are printed.

idiag

By default, idiag=0 uses full diagonalization (preferred for small model space).

If idiag=1, then TD-DFT/SOC can use Davidson's algorithm also, along with a specification for the no. of states by iexit.

iact

=1, allows to use active space specification for the projected active-orbital SOC Hamiltonian (P*HSOC*P), eup can be specified in (eV) to give a cut off to define active physically interested excited states.

Stability analysis

isab

isave

memory control

memjkop

Others

isgn

ivo

tddft (last edited 2022-10-28 13:20:58 by bsuo)