welcome: please sign in
location: xianci

Xi'an-CI Program

   Xi’an-CI program generates Multi Reference SDCI (MRCISD) wavefunctions (including internal contracted MRCISD on several different level accuracy), N-electron Valence states Second Order Perturbation Theory (including multi-state NEVPT2 (MS-NEVPT2), N-electron Valence states Third Order Perturbation Theory (NEVPT3), Static-Dynamic-Static Second Order Perturbation Theory (SDSPT2), Static-Dynamic-Static Configuration Interaction (SDSCI), Configuration Based Multi Reference Second Order Perturbation Theory (CBMRPT2) and Configuration Based Multi Reference Third Order Perturbation Theory (CBMRPT3). This program is based on hole-particle symmetry and GUGA for the computation of CI matrix elements. The program can calculate several eigenvectors simultaneously.
   Xi’an-CI program is written by Zhenyi Wen, Yubin Wang, Zhengting Gan, Bingbing Suo and Yibo Lei (Institute of Modern Physics, Northwest University, China). 

Corresponding email

bsuo@nwu.edu.cn (Prof. Bingbing Suo) 
leiyb@nwu.edu.cn (Prof. Yibo Lei) 
wzy@nwu.edu.cn (Prof. Zhenyi Wen)
yubin_wang@hotmail.com (Prof. Yubin Wang)

References

Xi’an-CI Program Package Review 
1.      B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

ucMRCISD program
1.      Y. Wang, G. Zhai, B. Suo, Z. Gan, Z. Wen, Chem. Phys. Lett., 375, 134 (2003).
2.      Y. Wang, Z. Wen, Z. Zhang, Q. Du, J. Comput. Chem, 13, 187 (1992).
3.      Y. Lei, B. Suo, Y. Dou, Y. Wang, Z. Wen,  J. Comput. Chem, 31, 1752 (2010).
4.      B. Suo, G. Zhai, Y. Wang, Z. Wen, X. Hu, L. Li, J. Comput. Chem, 26, 88 (2005).  
5.      Z. Gan, K. Su, Y. Wang, Z. Wen, Sci. China Ser. B-Chem, 42, 43 (1999).
6.      Z. Wen, Y. Wang, H. Lin, Chem. Phys. Lett., 230, 41 (1994).

icMRCISD program
1.      Y. Wang, H. Han, Y. Lei, B. Suo, H. Zhu, Q. Song, Z. Wen, J. Chem. Phys., 141, 164114 (2014).
2.      B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

MS-NEVPT2 program
1.      C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.P.Malrieu, J. Chem. Phys., 114, 10252 (2001).
2.      Y. Lei, W. Liu, M. R. Hoffmann, Mol. Phys., 115, 2696 (2017).
3.      B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

SDSPT2 program
1.      Y. Lei, W. Liu, M. R. Hoffmann, Mol. Phys., 115, 2696 (2017).
2.      W. Liu, M.R. Hoffmann, Theor. Chem. Acc., 133, 1481 (2014).
3.      W. Liu, M.R. Hoffmann, J. Chem. Theory Comput., 12, 1169 (2016); 12, 3000(E) (2016).

CBMRPT2 program
1.      Y. Lei, Y. Wang, H. Han, Q. Song, B. Suo, Z. Wen, J. Chem. Phys., 137, 144102 (2012).
2.      A. Li, H. Han, B. Suo, Y. Wang, Z. Wen, Sci. China CHEMISTRY, 53. 933 (2010).
3.      Y. Wang, Z. Gan, K. Suo, Z, Wen, Sci. China Ser. B-Chem, 43, 567 (2000).

General keywords

Comment:

   If no keyword is used, xianci module will read information from mcscf and traint modules and then calculate Fully internal contracted MRCISD. 

Electron

Example:

Electron
 30

nroot

Example:

roots

Example:

istate

Example:

istate
2    !the total number of the selected roots
1 3  ! select the first and third roots.

Symm

Example:

Spin

core

Example:

Dele

Example:

ORBTXT

set to read BDF_WorkDir text orbital file, such as $BDF_WORKDIR/$BDFTASK.inporb

Example:

Orbtxt
inporb

XvrUse

The keyword for alternatively deleting virtual MOs by MCSCF XVR when keyword 'Dele' are not used to set delete MOs. Default is .false. However, the keyword 'Dele' is prior to 'XvrUse'.

Inactive

Example:

Close

Example:

Active

Example:

Comment:

  If the above keywords are not set. the mcscf and traint modules information will be used. 

SubDRT

Example:

Comment:

  If the above keywords are not set. the mcscf and traint modules information will be used. 

XSDSCI

keyword has the same funtion as the old keyword of eSDSCI.

Example:

 XSDSCI

VSD

Use Virtual Space Decompostion (VSD) formed MOs to calculate XSDSCI, so that this keyword is combined with XSDSCI. VSD is used to separate Virtual MOs of large basis set by the selection of N(L)-N_occ of nonzero SVD value of <Psi(vir)|Phi(projected small basis set)>. This divide Virtual space into strong correlated space and weak correlated space, respectively.

Example: test126.inp

Notice : The number of virtual MOs by large basis set must be larger than the number of small basis set.

NoVDVP

Skip calculation of \bar(V)D and \bar(V)P for MRPT2.

Example: test148.inp

Notice : The number of virtual MOs by large basis set must be larger than the number of small basis set.

MRCI

Example:

 MRCI

Qss

Qms

H0Fock

H0Dyall

SAFOCK

SSFOCK

SDFOCK

CSFiCI

CFGiCI

Cmin

Pmin

When do not use this keyword the E(H0) energy is equal to iCISCF energy and iCIPT2 energy will be added to the following MRCISD or MRPT2. This keyword is equal to 'CSFCRI'.

Qmin

QminDV

QminVD

QminDD

QminPV

QminVP

Qfix

ICreduce

NoICredu

ReadDRT

Nexci

Example:

Nexci

1

CVS

Core Valence Separation for Core excitation for GUGA if use this keyword. Default = .false.

Example:

GAS

several lines should be provided for controlling GASSCF calculations. Default is read from MCSCF and needs not to set. Line 1: number for GAS spaces, like GAS1, GAS2, GAS3, .... Line 2: minimum electron occupation numbers for the GAS spaces. Line 3: maximum electron occupation numbers for the GAS spaces. From Line 4 to Line (GAS spaces number plus 3) set active orbital with symmetry of these GAS spaces.

Example:

gas
2    ! there are two GAS spaces.
2 4  ! minimum electron occupation numbers for the GAS spaces.
4 10 ! maximum electron occupation numbers for the GAS spaces.
2 0 0 0  ! active orbitals of each irreps of GAS1
2 0 2 2  ! active orbitals of each irreps of GAS2.

Comment:

   With keyword 'GAS' setting, keywords 'active' is useless and can be missing.

ReadREF

Example:

$xianci
...
READREF
...
$end 

SeleREF

Example:

SELEREF 
 3 
2200  
2110  
2020  

RootPrt

Example:

RootPrt
 3   # the third state (root) energies will be printed. 

Maxiter

Example:

Maxiter
 50

PRTCRI

CITHR

Example:

CITHR 
 0.1

DCRI

Example:

CITHR 
 1.d-12

EPIC

Example:

epic
1.d-5

EPCC

Example:

epcc
1.d-10

Conv

Example:

Conv
1.d-8 1.d-4 1.d-8

ETHRES

InitHDav

InitH0Dav

FollowDav

Memory keywords

Nosavelp

H0Tra

NCISAVE

MAXREF

Example:

NODE 
 50000

NODE

Example:

NODE 
 1000000

subNODE

Example:

NODE 
 100000

Maxload

PLBLK

Example:

PLBLK
 10000000

IC module keywords

UCCI

Example:

 UCCI

FCCI

Example:

 FCCI

NICI

Example:

 NICI

CWCI

Example:

 CWCI

WKCI

Example:

 WKCI

SDCI

Example:

 SDCI

XDCI

Example:

 XDCI

MRPT keywords

Comment:

  If no keyword is set for perturbation theory calculation in the following, xianci module will calculate MRCISD in default. 

Notice:

  The following methods use Fully internal contraction wavefunction (FCCI) as default, while NICI, CWCI, SDCI, WKCI modules should be set in turn for the case FCCI module fails.  

NEVPT2

Example:

 NEVPT2

MR-NEVPT2

Example:

 MR-NEVPT2

NEVPT3

Example:

 NEVPT3

SDSPT2

Example:

 SDSPT2

SDSCI

Example:

 SDSCI

DYLAN

NOLAN

DOLAN

DEPSI2

NDIMPS

Example:

 NDIMPS
  2   # two high-lying CASSCF wavefunctions are used to produce Ps wavefunction in SDSPT2 and SDSCI relative to reference wavefunctions.

Comment:

 If Keyword 'NDIMPS' are not set or set to zero and keyword 'NOLAN' are set, SDSPT2 or SDSCI has no Ps wavefunction. 

CBMRPT2

Example:

 CBMRPT2

MR-CBMRPT2

Example:

 MR-CBMRPT2 

MR-CBMRPT3

Example:

 MR-CBMRPT3 

Examples

Test Example 1

input:

$COMPASS 
Title
 C2H4 Molecule test run
Basis
 cc-pvdz
Geometry
 C             0.000000       1.386400       0.000000    
 C             0.000000      -1.386400       0.000000    
 C             2.099700       2.794200       0.000000    
 C            -2.099700      -2.794200       0.000000    
 H            -1.845200       2.307000       0.000000    
 H             1.845200      -2.307000       0.000000    
 H             3.968500       1.930200       0.000000    
 H            -3.968500      -1.930200       0.000000    
 H             2.015100       4.847500       0.000000    
 H            -2.015100      -4.847500       0.000000    
END geometry
Check
unit
bohr
$END

$xuanyuan
$end

$SCF
RHF
charge
 0
spin
 1
$END

$MCSCF
close
 7   0   0   5
active
 0   2   3   1
actele
 6
spin
 1
symmetry
 1
roots
 3 3 
 1 2 3 
 1 1 1 
mixci
 2  
 1 3
 2 1
 1 4 
ROOTPRT
 1
prtcri
0.1
guess
hforb
$END

$TRAINT
Frozen
 2 0 0 2 0 0 0 0 
Orbital
 mcorb
$END

$XIANCI
nroot
2
spin
1
symmetry
1
$END

$XIANCI
nroot
1
spin
3
symmetry
4
$END

Results:

========================= mcscf results ==============================
    State Averaged ci energy      -154.86258790

    root   1
    energy=     -154.98691206     exe(eV)=    0.0000


    root   2
    energy=     -154.73707954     exe(eV)=    6.7983


    root   3
    energy=     -154.86377210     exe(eV)=    3.3508

 
 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MCSCF:MCENERGY:     -154.9869121     -154.7370795     -154.8637721
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++
 
  End   MCSCF Calculation

========================= xianci results ==============================

=============================== For first type of CI with two singlet states ====================================

 Roots of Heff are calculated are listed below: 
 
                        ENE           ENE + Pople       ENE + App Pople       ENE + DAV           ENE + MEISS
  root   1       -155.45209027       -155.52854668       -155.52960628       -155.51383149       -155.51395190
  root   2       -155.19957647       -155.27731997       -155.27842584       -155.26200965       -155.26229526
               MRCISD energyies     Pople Correction  App Pople Correction  Davidson Correction  Meissner correction    

 =====================================================

 MRSDCI CALCULATION CONVERGED

 NROOT      MC ENERGY        CI ENERGY          CI DAV             DAVCOEF
   1     -154.98691206    -155.45209027      -155.51383149         0.867274
   2     -154.73707954    -155.19957647      -155.26200965         0.865008
         MCSCF energyies  MRCISD energyies Davidson Correction  Reference weight   
    
    root   1
    energy=     -155.45209027     exe(eV)=    0.0000


    root   2
    energy=     -155.19957647     exe(eV)=    6.8713

 
 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRCI:CIENERGY:     -155.4520903     -155.1995765
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

=============================== For second type of CI with one triplet state ====================================
 

 Roots of Heff are calculated are listed below: 
 
                        ENE           ENE + Pople       ENE + App Pople       ENE + DAV           ENE + MEISS
  root   1       -155.32503309       -155.40089070       -155.40194273       -155.38628185       -155.38640551
 
 =====================================================

 MRSDCI CALCULATION CONVERGED

 NROOT      MC ENERGY        CI ENERGY        CI DAV         DAVCOEF
   1     -154.86377210    -155.32503309    -155.38628185    0.867215

    root   1
    energy=     -155.32503309     exe(eV)=    0.0000

 
 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRCI:CIENERGY:     -155.3250331
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

Test Example 2

input:

$TRAINT
Frozen
 2 0 0 2 0 0 0 0 
Orbital
 mcorb
mrpt2
$END

$XIANCI
nroot
2
spin
1
symmetry
1
SDSPT2
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 NROOT   MC ENE        SS-NEVPT2 ENE   MS-NEVPT2 ENE     SDSPT2 ENE    SDSPT2+Q1 ENE   SDSPT2+Q2 ENE        SDSPT2+Q3 ENE       DAVCOEF
   1   -154.98691206   -155.47745410   -155.47745446   -155.41455599   -155.47503759   -155.47574313       -155.46512580        0.881748
   2   -154.73707954   -155.21961390   -155.21961354   -155.15793413   -155.21775988   -155.21846183       -155.20789974        0.881276
Energies:   MCSCF       SS-NEVPT2       MS-NEVPT2         SDSPT2    Pople Correction App Pople Correction Davidson Correction Ref. Weight 

Test Example 3

input:

$XIANCI
nroot
2
spin
1
symmetry
1
SDSCI
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 NROOT   MC ENE        SS-NEVPT2 ENE   MS-NEVPT2 ENE     SDSPT2 ENE    SDSPT2+Q1 ENE   SDSPT2+Q2 ENE   SDSPT2+Q3 ENE   DAVCOEF
   1   -154.98691206   -155.47745410   -155.47745446   -155.44006672   -155.51313986   -155.51413050   -155.49935009   0.869176
   2   -154.73707954   -155.21961390   -155.21961354   -155.18843582   -155.26361048   -155.26466844   -155.24894428   0.865941
Energies:   MCSCF       SS-NEVPT2       MS-NEVPT2         SDSCI  Pople Correction App Pople Correction Davidson Correction Ref. Weight 

Test Example 4

input:

$XIANCI
nroot
2
spin
1
symmetry
1
NEVPT3
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 NROOT        MC ENERGY       SS-NEVPT2 ENERGY    MS-NEVPT2 ENERGY    SS-NEVPT3 ENERGY    MS-NEVPT3 ENERGY
   1       -154.98691206       -155.47742562       -155.47742574       -155.51364676       -155.51364676
   2       -154.73707954       -155.21952164       -155.21952152       -155.26247430       -155.26247430
Energies:     MCSCF             SS-NEVPT2            MS-NEVPT2          SS-NEVPT3            Useless

Test Example 5

input:

$XIANCI
nroot
2
spin
1
symmetry
1
CBMRPT2
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRPT2:PT2ENERGY:     -155.5496768     -155.2931467
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

Test Example 6

input:

$XIANCI
nroot
2
spin
1
symmetry
1
MR-CBMRPT3
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRPT3:PT3ENERGY:     -155.5176000     -155.2629435
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

xianci (last edited 2024-04-03 02:55:48 by leiyibo)