welcome: please sign in
location: Diff for "xianci"
Differences between revisions 1 and 124 (spanning 123 versions)
Revision 1 as of 2018-10-11 14:20:35
Size: 320
Editor: leiyibo
Comment:
Revision 124 as of 2022-05-07 00:33:39
Size: 24887
Editor: leiyibo
Comment:
Deletions are marked like this. Additions are marked like this.
Line 7: Line 7:
= Xi'an-CI = = Xi'an-CI Program =
Line 11: Line 11:
Xi'an-CI program.
}}}
   Xi’an-CI program generates Multi Reference SDCI (MRCISD) wavefunctions (including internal contracted MRCISD on several different level accuracy), N-electron Valence states Second Order Perturbation Theory (including multi-state NEVPT2 (MS-NEVPT2), N-electron Valence states Third Order Perturbation Theory (NEVPT3), Static-Dynamic-Static Second Order Perturbation Theory (SDSPT2), Static-Dynamic-Static Configuration Interaction (SDSCI), Configuration Based Multi Reference Second Order Perturbation Theory (CBMRPT2) and Configuration Based Multi Reference Third Order Perturbation Theory (CBMRPT3). This program is based on hole-particle symmetry and GUGA for the computation of CI matrix elements. The program can calculate several eigenvectors simultaneously.
   Xi’an-CI program is written by Zhenyi Wen, Yubin Wang, Zhengting Gan, Bingbing Suo and Yibo Lei (Institute of Modern Physics, Northwest University, China).
}}}

== Corresponding email ==
{{{
bsuo@nwu.edu.cn (Prof. Bingbing Suo)
leiyb@nwu.edu.cn (Prof. Yibo Lei)
wzy@nwu.edu.cn (Prof. Zhenyi Wen)
yubin_wang@hotmail.com (Prof. Yubin Wang)
}}}

== References ==
{{{
Xi’an-CI Program Package Review
1. B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

ucMRCISD program
1. Y. Wang, G. Zhai, B. Suo, Z. Gan, Z. Wen, Chem. Phys. Lett., 375, 134 (2003).
2. Y. Wang, Z. Wen, Z. Zhang, Q. Du, J. Comput. Chem, 13, 187 (1992).
3. Y. Lei, B. Suo, Y. Dou, Y. Wang, Z. Wen, J. Comput. Chem, 31, 1752 (2010).
4. B. Suo, G. Zhai, Y. Wang, Z. Wen, X. Hu, L. Li, J. Comput. Chem, 26, 88 (2005).
5. Z. Gan, K. Su, Y. Wang, Z. Wen, Sci. China Ser. B-Chem, 42, 43 (1999).
6. Z. Wen, Y. Wang, H. Lin, Chem. Phys. Lett., 230, 41 (1994).

icMRCISD program
1. Y. Wang, H. Han, Y. Lei, B. Suo, H. Zhu, Q. Song, Z. Wen, J. Chem. Phys., 141, 164114 (2014).
2. B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

MS-NEVPT2 program
1. C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.P.Malrieu, J. Chem. Phys., 114, 10252 (2001).
2. Y. Lei, W. Liu, M. R. Hoffmann, Mol. Phys., 115, 2696 (2017).
3. B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

SDSPT2 program
1. Y. Lei, W. Liu, M. R. Hoffmann, Mol. Phys., 115, 2696 (2017).
2. W. Liu, M.R. Hoffmann, Theor. Chem. Acc., 133, 1481 (2014).
3. W. Liu, M.R. Hoffmann, J. Chem. Theory Comput., 12, 1169 (2016); 12, 3000(E) (2016).

CBMRPT2 program
1. Y. Lei, Y. Wang, H. Han, Q. Song, B. Suo, Z. Wen, J. Chem. Phys., 137, 144102 (2012).
2. A. Li, H. Han, B. Suo, Y. Wang, Z. Wen, Sci. China CHEMISTRY, 53. 933 (2010).
3. Y. Wang, Z. Gan, K. Suo, Z, Wen, Sci. China Ser. B-Chem, 43, 567 (2000).
}}}
Line 14: Line 57:

Comment:
{{{
   If no keyword is used, xianci module will read information from mcscf and traint modules and then calculate Fully internal contracted MRCISD.
}}}

=== Electron ===
{{{#!wiki
  CI effective electron Number without electrons of frozen MOs in traint module for MO integral transformation
}}}
Example:
{{{
Electron
 30
}}}

=== nroot ===
{{{#!wiki
  State Number, CASSCF with MixCI method needs to input state number of target CI type, which is equal to 'roots'
}}}
Example:

=== roots ===
{{{#!wiki
  State Number, CASSCF with MixCI method needs to input state number of target CI type, which is equal to 'nroot'
}}}
Example:

=== Symm ===
{{{#!wiki
  Symmetry of the target state, CASSCF with MixCI method needs to input irrep of target CI type.
}}}
Example:

=== Spin ===
{{{#!wiki
  Spin multiplicity (2S+1), CASSCF with MixCI method needs to input Spin multiplicity of target CI type.
}}}

=== core ===
{{{#!wiki
  Number of frozen orbitals in each irreps, which must be missing or set to zero in each irreps if it has frozen MOs in traint module.
}}}
Example:
Line 16: Line 104:
  Number of inactive orbitals in each irreps.
}}}
Example:
  Number of inactive orbitals in each irreps, which is equal to 'Close'
}}}
Example:

=== Close ===
{{{#!wiki
  Number of inactive orbitals in each irreps, which is equal to 'Inactive'.
}}}
Example:

=== Active ===
{{{#!wiki
  Number of active orbitals in each irreps.
}}}
Example:

Comment:
{{{
  If the above keywords are not set. the mcscf and traint modules information will be used.
}}}

=== ReadDRT ===
{{{#!wiki
  read DRT from $WORKDIR/$BDFTASK.cidrt Default is .false.
}}}

=== Nexci ===
{{{#!wiki
  set excitation number relative to reference CSFs, default = 2.
}}}

Example:
{{{
Nexci

2

}}}

=== CVS ===
{{{#!wiki
Core Valence Separation for Core excitation for GUGA if use this keyword. Default = .false.
}}}
Example:
{{{
}}}

=== iCIGAS ===
{{{#!wiki
set iCI + GAS as reference space. This keyword is equal to the simultaneous used keywords readref (or SeleREF) and GAS.
Firstly read REF CSF from $WORKDIR/$BDFTASK.select, the functional is equal to Keyword 'SeleREF' but read reference CSF from text file.
Secondly several lines should be provided for controlling GASSCF calculations. Default is read from MCSCF and needs not to set.
Line 1: number for GAS spaces, like GAS1, GAS2, GAS3, ....
Line 2: minimum electron occupation numbers for the GAS spaces.
Line 3: maximum electron occupation numbers for the GAS spaces.
From Line 4 to Line (GAS spaces number plus 3) set active orbital with symmetry of these GAS spaces.
}}}
Example:
{{{
gas
2 ! there are two GAS spaces.
2 4 ! minimum electron occupation numbers for the GAS spaces.
4 10 ! maximum electron occupation numbers for the GAS spaces.
2 0 0 0 ! active orbitals of each irreps of GAS1
2 0 2 2 ! active orbitals of each irreps of GAS2.
}}}
Comment:
{{{
   With keyword 'GAS' setting, keywords 'active' is useless and can be missing.
}}}

=== GAS ===
{{{#!wiki
several lines should be provided for controlling GASSCF calculations. Default is read from MCSCF and needs not to set.
Line 1: number for GAS spaces, like GAS1, GAS2, GAS3, ....
Line 2: minimum electron occupation numbers for the GAS spaces.
Line 3: maximum electron occupation numbers for the GAS spaces.
From Line 4 to Line (GAS spaces number plus 3) set active orbital with symmetry of these GAS spaces.
}}}
Example:
{{{
gas
2 ! there are two GAS spaces.
2 4 ! minimum electron occupation numbers for the GAS spaces.
4 10 ! maximum electron occupation numbers for the GAS spaces.
2 0 0 0 ! active orbitals of each irreps of GAS1
2 0 2 2 ! active orbitals of each irreps of GAS2.
}}}
Comment:
{{{
   With keyword 'GAS' setting, keywords 'active' is useless and can be missing.
}}}

=== ReadREF ===
{{{#!wiki
  read REF CSF from $WORKDIR/$BDFTASK.select, the functional is combined with keyword 'CSFCRI' to read and select reference CSF from text file.
}}}

Example:
{{{
%cp $BDF_WORKDIR/SpinTwo_0_Irrep_0_Cmin_1.000e-04.PrimeSpace $BDF_WORKDIR/$BDFTASK.select

$xianci
...
READREF
...
$end
}}}

=== SeleREF ===
{{{#!wiki
  Line 1: Set Number of Selected CSF occupations (Nref).
  Line 2 to Line Nref+1: set occupation (2,1,0) respectively to double, single and zero occupation.
}}}
Example:
{{{
SELEREF
 3
2200
2110
2020
}}}

=== RootPrt ===
{{{#!wiki
  Print the target state (root) energy for calculating numerical gradient of this state in numgrad module, default is 1.
}}}
Example:
{{{
RootPrt
 3 # the third state (root) energies will be printed.
}}}


=== Maxiter ===
{{{#!wiki
  Maximum iteration Number of MRCISD. The default value is 500.
}}}
Example:
{{{
Maxiter
 50
}}}

=== CSFCRI ===
{{{#!wiki
  Threshold of CI coefficient for reference CSFs which will read from $WORKDIR/BDFTASK.select. Default : 0.d0
}}}

=== PRTCRI ===
{{{#!wiki
  set threshold for CI vector print, which is equal to keyword 'CITHR'. The default value is 0.05.
}}}

=== CITHR ===
{{{#!wiki
  set threshold for CI vector print, which is equal to keyword 'PRTCRI'. The default value is 0.05.
}}}
Example:
{{{
CITHR
 0.1
}}}

=== DCRI ===
{{{#!wiki
  set threshold for internal contracted CSF (ICCSF) orthonormalization. The default value is 1.d-12.
}}}
Example:
{{{
CITHR
 1.d-12
}}}

=== EPCC ===
{{{#!wiki
  set threshold for CI coupling coefficient which are used to form Hamiltonian matrices. The default value is 1.d-20.
}}}
Example:
{{{
CITHR
 1.d-20
}}}


=== Conv ===
{{{#!wiki
  set threshold for CI energy, CI vector and Residual vector of MRCISD, respectively. The default value is set as the following example.
}}}
Example:
{{{
Conv
1.d-8 1.d-6 1.d-8
}}}

=== ETHRES ===
{{{#!wiki
  set threshold for CI energy of H0. The default value is 1.d-8 .
}}}

=== InitHDav ===
{{{#!wiki
 
  Set 1 for initial vectors on Davidson diagonalization by largest coupling with energy lowest CSFs,which is default.


  Set 2 for initial vectors on Davidson diagonalization by low-lying CI Hamiltonian diagonal elements near by reference states.


  Set 3 for initial vectors on Davidson diagonalization by the residual vector of reference wavefunctions.
}}}

=== InitH0Dav ===
{{{#!wiki
  Set 1 for initial vectors of P space on Davidson diagonalization by largest coupling with energy lowest CSFs for the H0 diagonalization.
 
  Set 2 for initial vectors of P space on Davidson diagonalization by low-lying CI Hamiltonian diagonal elements near by reference CSFs for the H0 diagonalization,
  which is default.
}}}

=== FollowDav ===
{{{#!wiki
  If this keyword is specified in a MRCISD calculation, and if the $numgrad block is present, the numerical gradient calculation will use the MRCISD+Q energies. Otherwise the uncorrected MRCISD energies will be used.
}}}

== Memory keywords ==

=== Nosavelp ===
{{{#!wiki
  set to calculate partial loops on each MRCI iteration individually. This leads to more MRCI calculation time but saves hard disk and should be used to the system with large active space.
}}}

=== NCISAVE ===
{{{#!wiki
  Maximum H0 dimension can save H0 matrix, which insteads of the old keyword of 'H0TRA'. The default value is 10000.
}}}

=== MAXREF ===
{{{#!wiki
  Maximum selected reference CSF number. The default value is 1000.
}}}
Example:
{{{
NODE
 1000
}}}


=== NODE ===
{{{#!wiki
  Maximum DRT node number. The default value is 100000.
}}}
Example:
{{{
NODE
 100000
}}}

=== WEI ===
{{{#!wiki
  Maximum DRT WEI number. The default value is 500000.
}}}
Example:
{{{
WEI
 500000
}}}

=== PLOOP ===
{{{#!wiki
  Maximum partial LOOP number. The default value is 500000.
}}}
Example:
{{{
PLOOP
 500000
}}}

=== SETICF ===
{{{#!wiki
  Maximum partial internal CSFs number in active space. The default value is 500.
}}}
Example:
{{{
SETICF
 500
}}}

=== SETDXY ===
{{{#!wiki
  Maximum CI subspace in active space (DXY). The default value is 50000.
}}}
Example:
{{{
SETDXY
 50000
}}}

=== SETH0 ===
{{{#!wiki
  Maximum reference CSF number. The default value is 500000.
}}}
Example:
{{{
SETH0
 500000
}}}

=== SETLOPU ===
{{{#!wiki
  Maximum Lopu number between double and active spaces. The default value is 2000.
}}}
Example:
{{{
SETH0
 500000
}}}

=== MAXLOOP ===
{{{#!wiki
  This keyword, alias 'Maxplp' has the function that maximum partial LOOP number for CI acceleration which is larger than or equal to keyword 'PLOOP' set value. The default value is 500000.
}}}
Example:
{{{
MAXLOOP
 500000
}}}

=== MAXPLP ===
{{{#!wiki
  This keyword, alias 'Maxloop' has the function that maximum partial LOOP number for CI acceleration which is larger than or equal to keyword 'PLOOP' set value. The default value is 500000.
}}}
Example:
{{{
MAXPLP
 500000
}}}

=== PLBLK ===
{{{#!wiki
  Maximum partial LOOP block number. The default value is 500000.
}}}
Example:
{{{
PLBLK
 500000
}}}


== IC module keywords ==

=== UCCI ===
{{{#!wiki
   This keyword is set for un-contracted MRCISD.
}}}
Example:
{{{
 UCCI
}}}

=== VVCI ===
{{{#!wiki
   This keyword is set for contracted reference CSFs to zeroth-order wavefuctions, so that reference CSFs are not relaxed which is used together with the following contraction modes, in which reference CSFs are all relaxed by CI Hamiltonian diagonalization. The functional by this keyword is not recommended and needs testing. If use secondary states, SDSPT2 with 'dolan' or 'dylan' needs to be calculated in advance. Then the corresponding 'dolan' or 'dylan' needs to be input for icMRCI calculation.
}}}
Example: test069.inp
{{{
 VVCI
}}}

=== FCCI ===
{{{#!wiki
   Default for internal contraction module. This keyword is set for Fully internal Contraction module of CSFs, reference CSFs are not contracted for MRCISD calculation, while perturbation theory calculation all CI subspaces are internally contracted.
}}}
Example:
{{{
 FCCI
}}}

=== NICI ===
{{{#!wiki
   This keyword is set for one internal Contraction module of CSFs, only internal CI subspaces are not contracted.
}}}
Example:
{{{
 NICI
}}}


=== CWCI ===
{{{#!wiki
   This keyword is set for one internal Contraction module of CSFs, corresponding to keyword 'mrcic' in Molpro program for Celani-Werner (CW) contraction, where only CI subspaces VV, DV, DDV and VD in hole-particle symmetry are not contracted.
}}}
Example:
{{{
 CWCI
}}}

=== WKCI ===
{{{#!wiki
   This keyword is set for one internal Contraction module of CSFs, corresponding to keyword 'mrci' in Molpro program for Werner-Knowles (WK) contraction, where only CI subspaces with two electron excitation to external spaces are contracted.
}}}
Example:
{{{
 WKCI
}}}


=== SDCI ===
{{{#!wiki
   This keyword is set for one internal Contraction module of CSFs, the accuracy of which is more accurate than CWCI but less than WKCI. In contrast with WKCI module, CI subspaces with two electron excitation from hole space and meanwhile one electron excitation to external space are also contracted.
}}}
Example:
{{{
 SDCI
}}}


=== XDCI ===
{{{#!wiki
   This keyword is set for one internal Contraction module of CSFs, where XS(T), S(T)V and S(T)D are not contracted.
}}}
Example:
{{{
 XDCI
}}}
== MRPT keywords ==

Comment:
{{{
  If no keyword is set for perturbation theory calculation in the following, xianci module will calculate MRCISD in default.
}}}

Notice:
{{{
  The following methods use Fully internal contraction wavefunction (FCCI) as default, while NICI, CWCI, SDCI, WKCI modules should be set in turn for the case FCCI module fails.
}}}

=== DEPENST ===
{{{#!wiki
  Using state-dependent Fock diagonal elements in Dyall Hamiltonian, default : state-average Fock diagonal elements .
}}}
Example:
{{{
 NEVPT2
}}}

=== NEVPT2 ===
{{{#!wiki
  set for SS-NEVPT2 and MS-NEVPT2 calculations, where each reference state expands a specific CI space.
}}}
Example:
{{{
 NEVPT2
}}}

=== MR-NEVPT2 ===
{{{#!wiki
  set for SS-NEVPT2 and MS-NEVPT2 calculations, where all reference states expand only one multi-states CI space.
}}}
Example:
{{{
 MR-NEVPT2
}}}

=== NEVPT3 ===
{{{#!wiki
  set for SS-NEVPT3 calculation, where each reference state expands a specific CI space.
}}}
Example:
{{{
 NEVPT3
}}}

=== SDSPT2 ===
{{{#!wiki
  set for SDSPT2 calculation, where all reference states expand only one multi-states CI space.
}}}
Example:
{{{
 SDSPT2
}}}

=== SDSCI ===
{{{#!wiki
  set for SDSCI calculation, where all reference states expand only one multi-states CI space.
}}}
Example:
{{{
 SDSCI
}}}

=== NOLAN ===
{{{#!wiki
  set for SDSPT2 and SDSCI calculations, where high-lying MCSCF wavefunction as Psi2 are used to generate Ps wavefunction in SDSPT2 and SDSCI.
}}}

=== DOLAN ===
{{{#!wiki
  set for SDSPT2 and SDSCI calculations, where Lanczos wavefunction as Psi2 are used to generate Ps wavefunction in SDSPT2 and SDSCI.
}}}

=== DYLAN ===
{{{#!wiki
  set for SDSPT2 and SDSCI calculations, where truncated psi(0)_i dynamically combinated Lanczos Psi2 by sum_i<psi(0)_i|H|Psi(1)> are used to generate Ps wavefunction in SDSPT2 and SDSCI.
}}}

=== DEPSI2 ===
{{{#!wiki
  set threshold for the cutoff of the calculated number of H0 states, those of which are high-lying than the target states. The default value is 5 eV, users can set the threshold with unit of eV.
}}}

=== NDIMPS ===
{{{#!wiki
  set for SDSPT2 and SDSCI calculations, where CASSCF wavefunctions are used to produce Ps wavefunction in SDSPT2 and SDSCI.
}}}
Example:
{{{
 NDIMPS
  2 # two high-lying CASSCF wavefunctions are used to produce Ps wavefunction in SDSPT2 and SDSCI relative to reference wavefunctions.
}}}
Comment:
{{{
 If Keyword 'NDIMPS' are not set or set to zero and keyword 'NOLAN' are set, SDSPT2 or SDSCI has no Ps wavefunction.
}}}

=== CBMRPT2 ===
{{{#!wiki
  set for CB-MRPT2 calculation, where each reference state expands a specific CI space.
}}}
Example:
{{{
 CBMRPT2
}}}

=== MR-CBMRPT2 ===
{{{#!wiki
  set for CB-MRPT2 calculations, where all reference states expand only one multi-states CI space.
}}}
Example:
{{{
 MR-CBMRPT2
}}}

=== MR-CBMRPT3 ===
{{{#!wiki
  set for CB-MRPT3 calculations, where all reference states expand only one multi-states CI space.
}}}
Example:
{{{
 MR-CBMRPT3
}}}

== Examples ==

=== Test Example 1 ===
input:
{{{
$COMPASS
Title
 C2H4 Molecule test run
Basis
 cc-pvdz
Geometry
 C 0.000000 1.386400 0.000000
 C 0.000000 -1.386400 0.000000
 C 2.099700 2.794200 0.000000
 C -2.099700 -2.794200 0.000000
 H -1.845200 2.307000 0.000000
 H 1.845200 -2.307000 0.000000
 H 3.968500 1.930200 0.000000
 H -3.968500 -1.930200 0.000000
 H 2.015100 4.847500 0.000000
 H -2.015100 -4.847500 0.000000
END geometry
Check
unit
bohr
$END

$xuanyuan
$end

$SCF
RHF
charge
 0
spin
 1
$END

$MCSCF
close
 7 0 0 5
active
 0 2 3 1
actele
 6
spin
 1
symmetry
 1
roots
 3 3
 1 2 3
 1 1 1
mixci
 2
 1 3
 2 1
 1 4
ROOTPRT
 1
prtcri
0.1
guess
hforb
$END

$TRAINT
Frozen
 2 0 0 2 0 0 0 0
Orbital
 mcorb
$END

$XIANCI
nroot
2
spin
1
symmetry
1
$END

$XIANCI
nroot
1
spin
3
symmetry
4
$END

}}}


Results:
{{{
========================= mcscf results ==============================
    State Averaged ci energy -154.86258790

    root 1
    energy= -154.98691206 exe(eV)= 0.0000


    root 2
    energy= -154.73707954 exe(eV)= 6.7983


    root 3
    energy= -154.86377210 exe(eV)= 3.3508

 
 ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MCSCF:MCENERGY: -154.9869121 -154.7370795 -154.8637721
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++
 
  End MCSCF Calculation

========================= xianci results ==============================

=============================== For first type of CI with two singlet states ====================================

 Roots of Heff are calculated are listed below:
 
                        ENE ENE + Pople ENE + App Pople ENE + DAV ENE + MEISS
  root 1 -155.45209027 -155.52854668 -155.52960628 -155.51383149 -155.51395190
  root 2 -155.19957647 -155.27731997 -155.27842584 -155.26200965 -155.26229526
               MRCISD energyies Pople Correction App Pople Correction Davidson Correction Meissner correction

 =====================================================

 MRSDCI CALCULATION CONVERGED

 NROOT MC ENERGY CI ENERGY CI DAV DAVCOEF
   1 -154.98691206 -155.45209027 -155.51383149 0.867274
   2 -154.73707954 -155.19957647 -155.26200965 0.865008
         MCSCF energyies MRCISD energyies Davidson Correction Reference weight
    
    root 1
    energy= -155.45209027 exe(eV)= 0.0000


    root 2
    energy= -155.19957647 exe(eV)= 6.8713

 
 ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRCI:CIENERGY: -155.4520903 -155.1995765
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

=============================== For second type of CI with one triplet state ====================================
 

 Roots of Heff are calculated are listed below:
 
                        ENE ENE + Pople ENE + App Pople ENE + DAV ENE + MEISS
  root 1 -155.32503309 -155.40089070 -155.40194273 -155.38628185 -155.38640551
 
 =====================================================

 MRSDCI CALCULATION CONVERGED

 NROOT MC ENERGY CI ENERGY CI DAV DAVCOEF
   1 -154.86377210 -155.32503309 -155.38628185 0.867215

    root 1
    energy= -155.32503309 exe(eV)= 0.0000

 
 ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRCI:CIENERGY: -155.3250331
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++


}}}

=== Test Example 2 ===
input:
{{{
$TRAINT
Frozen
 2 0 0 2 0 0 0 0
Orbital
 mcorb
mrpt2
$END

$XIANCI
nroot
2
spin
1
symmetry
1
SDSPT2
$END

}}}

Results:
{{{
=============================== For first type of CI with two singlet states ====================================

 NROOT MC ENE SS-NEVPT2 ENE MS-NEVPT2 ENE SDSPT2 ENE SDSPT2+Q1 ENE SDSPT2+Q2 ENE SDSPT2+Q3 ENE DAVCOEF
   1 -154.98691206 -155.47745410 -155.47745446 -155.41455599 -155.47503759 -155.47574313 -155.46512580 0.881748
   2 -154.73707954 -155.21961390 -155.21961354 -155.15793413 -155.21775988 -155.21846183 -155.20789974 0.881276
Energies: MCSCF SS-NEVPT2 MS-NEVPT2 SDSPT2 Pople Correction App Pople Correction Davidson Correction Ref. Weight

}}}

=== Test Example 3 ===
input:
{{{
$XIANCI
nroot
2
spin
1
symmetry
1
SDSCI
$END

}}}

Results:
{{{
=============================== For first type of CI with two singlet states ====================================

 NROOT MC ENE SS-NEVPT2 ENE MS-NEVPT2 ENE SDSPT2 ENE SDSPT2+Q1 ENE SDSPT2+Q2 ENE SDSPT2+Q3 ENE DAVCOEF
   1 -154.98691206 -155.47745410 -155.47745446 -155.44006672 -155.51313986 -155.51413050 -155.49935009 0.869176
   2 -154.73707954 -155.21961390 -155.21961354 -155.18843582 -155.26361048 -155.26466844 -155.24894428 0.865941
Energies: MCSCF SS-NEVPT2 MS-NEVPT2 SDSCI Pople Correction App Pople Correction Davidson Correction Ref. Weight

}}}

=== Test Example 4 ===
input:
{{{
$XIANCI
nroot
2
spin
1
symmetry
1
NEVPT3
$END

}}}

Results:
{{{
=============================== For first type of CI with two singlet states ====================================

 NROOT MC ENERGY SS-NEVPT2 ENERGY MS-NEVPT2 ENERGY SS-NEVPT3 ENERGY MS-NEVPT3 ENERGY
   1 -154.98691206 -155.47742562 -155.47742574 -155.51364676 -155.51364676
   2 -154.73707954 -155.21952164 -155.21952152 -155.26247430 -155.26247430
Energies: MCSCF SS-NEVPT2 MS-NEVPT2 SS-NEVPT3 Useless
}}}

=== Test Example 5 ===
input:
{{{
$XIANCI
nroot
2
spin
1
symmetry
1
CBMRPT2
$END

}}}

Results:
{{{
=============================== For first type of CI with two singlet states ====================================

 ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRPT2:PT2ENERGY: -155.5496768 -155.2931467
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++
}}}

=== Test Example 6 ===
input:
{{{
$XIANCI
nroot
2
spin
1
symmetry
1
MR-CBMRPT3
$END

}}}

Results:
{{{
=============================== For first type of CI with two singlet states ====================================

 ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRPT3:PT3ENERGY: -155.5176000 -155.2629435
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++
}}}

Xi'an-CI Program

   Xi’an-CI program generates Multi Reference SDCI (MRCISD) wavefunctions (including internal contracted MRCISD on several different level accuracy), N-electron Valence states Second Order Perturbation Theory (including multi-state NEVPT2 (MS-NEVPT2), N-electron Valence states Third Order Perturbation Theory (NEVPT3), Static-Dynamic-Static Second Order Perturbation Theory (SDSPT2), Static-Dynamic-Static Configuration Interaction (SDSCI), Configuration Based Multi Reference Second Order Perturbation Theory (CBMRPT2) and Configuration Based Multi Reference Third Order Perturbation Theory (CBMRPT3). This program is based on hole-particle symmetry and GUGA for the computation of CI matrix elements. The program can calculate several eigenvectors simultaneously.
   Xi’an-CI program is written by Zhenyi Wen, Yubin Wang, Zhengting Gan, Bingbing Suo and Yibo Lei (Institute of Modern Physics, Northwest University, China). 

Corresponding email

bsuo@nwu.edu.cn (Prof. Bingbing Suo) 
leiyb@nwu.edu.cn (Prof. Yibo Lei) 
wzy@nwu.edu.cn (Prof. Zhenyi Wen)
yubin_wang@hotmail.com (Prof. Yubin Wang)

References

Xi’an-CI Program Package Review 
1.      B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

ucMRCISD program
1.      Y. Wang, G. Zhai, B. Suo, Z. Gan, Z. Wen, Chem. Phys. Lett., 375, 134 (2003).
2.      Y. Wang, Z. Wen, Z. Zhang, Q. Du, J. Comput. Chem, 13, 187 (1992).
3.      Y. Lei, B. Suo, Y. Dou, Y. Wang, Z. Wen,  J. Comput. Chem, 31, 1752 (2010).
4.      B. Suo, G. Zhai, Y. Wang, Z. Wen, X. Hu, L. Li, J. Comput. Chem, 26, 88 (2005).  
5.      Z. Gan, K. Su, Y. Wang, Z. Wen, Sci. China Ser. B-Chem, 42, 43 (1999).
6.      Z. Wen, Y. Wang, H. Lin, Chem. Phys. Lett., 230, 41 (1994).

icMRCISD program
1.      Y. Wang, H. Han, Y. Lei, B. Suo, H. Zhu, Q. Song, Z. Wen, J. Chem. Phys., 141, 164114 (2014).
2.      B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

MS-NEVPT2 program
1.      C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.P.Malrieu, J. Chem. Phys., 114, 10252 (2001).
2.      Y. Lei, W. Liu, M. R. Hoffmann, Mol. Phys., 115, 2696 (2017).
3.      B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).

SDSPT2 program
1.      Y. Lei, W. Liu, M. R. Hoffmann, Mol. Phys., 115, 2696 (2017).
2.      W. Liu, M.R. Hoffmann, Theor. Chem. Acc., 133, 1481 (2014).
3.      W. Liu, M.R. Hoffmann, J. Chem. Theory Comput., 12, 1169 (2016); 12, 3000(E) (2016).

CBMRPT2 program
1.      Y. Lei, Y. Wang, H. Han, Q. Song, B. Suo, Z. Wen, J. Chem. Phys., 137, 144102 (2012).
2.      A. Li, H. Han, B. Suo, Y. Wang, Z. Wen, Sci. China CHEMISTRY, 53. 933 (2010).
3.      Y. Wang, Z. Gan, K. Suo, Z, Wen, Sci. China Ser. B-Chem, 43, 567 (2000).

General keywords

Comment:

   If no keyword is used, xianci module will read information from mcscf and traint modules and then calculate Fully internal contracted MRCISD. 

Electron

  • CI effective electron Number without electrons of frozen MOs in traint module for MO integral transformation

Example:

Electron
 30

nroot

  • State Number, CASSCF with MixCI method needs to input state number of target CI type, which is equal to 'roots'

Example:

roots

  • State Number, CASSCF with MixCI method needs to input state number of target CI type, which is equal to 'nroot'

Example:

Symm

  • Symmetry of the target state, CASSCF with MixCI method needs to input irrep of target CI type.

Example:

Spin

  • Spin multiplicity (2S+1), CASSCF with MixCI method needs to input Spin multiplicity of target CI type.

core

  • Number of frozen orbitals in each irreps, which must be missing or set to zero in each irreps if it has frozen MOs in traint module.

Example:

Inactive

  • Number of inactive orbitals in each irreps, which is equal to 'Close'

Example:

Close

  • Number of inactive orbitals in each irreps, which is equal to 'Inactive'.

Example:

Active

  • Number of active orbitals in each irreps.

Example:

Comment:

  If the above keywords are not set. the mcscf and traint modules information will be used. 

ReadDRT

  • read DRT from $WORKDIR/$BDFTASK.cidrt Default is .false.

Nexci

  • set excitation number relative to reference CSFs, default = 2.

Example:

Nexci

2

CVS

Core Valence Separation for Core excitation for GUGA if use this keyword. Default = .false.

Example:

iCIGAS

set iCI + GAS as reference space. This keyword is equal to the simultaneous used keywords readref (or SeleREF) and GAS. Firstly read REF CSF from $WORKDIR/$BDFTASK.select, the functional is equal to Keyword 'SeleREF' but read reference CSF from text file. Secondly several lines should be provided for controlling GASSCF calculations. Default is read from MCSCF and needs not to set. Line 1: number for GAS spaces, like GAS1, GAS2, GAS3, .... Line 2: minimum electron occupation numbers for the GAS spaces. Line 3: maximum electron occupation numbers for the GAS spaces. From Line 4 to Line (GAS spaces number plus 3) set active orbital with symmetry of these GAS spaces.

Example:

gas
2    ! there are two GAS spaces.
2 4  ! minimum electron occupation numbers for the GAS spaces.
4 10 ! maximum electron occupation numbers for the GAS spaces.
2 0 0 0  ! active orbitals of each irreps of GAS1
2 0 2 2  ! active orbitals of each irreps of GAS2.

Comment:

   With keyword 'GAS' setting, keywords 'active' is useless and can be missing.

GAS

several lines should be provided for controlling GASSCF calculations. Default is read from MCSCF and needs not to set. Line 1: number for GAS spaces, like GAS1, GAS2, GAS3, .... Line 2: minimum electron occupation numbers for the GAS spaces. Line 3: maximum electron occupation numbers for the GAS spaces. From Line 4 to Line (GAS spaces number plus 3) set active orbital with symmetry of these GAS spaces.

Example:

gas
2    ! there are two GAS spaces.
2 4  ! minimum electron occupation numbers for the GAS spaces.
4 10 ! maximum electron occupation numbers for the GAS spaces.
2 0 0 0  ! active orbitals of each irreps of GAS1
2 0 2 2  ! active orbitals of each irreps of GAS2.

Comment:

   With keyword 'GAS' setting, keywords 'active' is useless and can be missing.

ReadREF

  • read REF CSF from $WORKDIR/$BDFTASK.select, the functional is combined with keyword 'CSFCRI' to read and select reference CSF from text file.

Example:

%cp $BDF_WORKDIR/SpinTwo_0_Irrep_0_Cmin_1.000e-04.PrimeSpace $BDF_WORKDIR/$BDFTASK.select

$xianci
...
READREF
...
$end 

SeleREF

  • Line 1: Set Number of Selected CSF occupations (Nref). Line 2 to Line Nref+1: set occupation (2,1,0) respectively to double, single and zero occupation.

Example:

SELEREF 
 3 
2200  
2110  
2020  

RootPrt

  • Print the target state (root) energy for calculating numerical gradient of this state in numgrad module, default is 1.

Example:

RootPrt
 3   # the third state (root) energies will be printed. 

Maxiter

  • Maximum iteration Number of MRCISD. The default value is 500.

Example:

Maxiter
 50

CSFCRI

  • Threshold of CI coefficient for reference CSFs which will read from $WORKDIR/BDFTASK.select. Default : 0.d0

PRTCRI

  • set threshold for CI vector print, which is equal to keyword 'CITHR'. The default value is 0.05.

CITHR

  • set threshold for CI vector print, which is equal to keyword 'PRTCRI'. The default value is 0.05.

Example:

CITHR 
 0.1

DCRI

  • set threshold for internal contracted CSF (ICCSF) orthonormalization. The default value is 1.d-12.

Example:

CITHR 
 1.d-12

EPCC

  • set threshold for CI coupling coefficient which are used to form Hamiltonian matrices. The default value is 1.d-20.

Example:

CITHR 
 1.d-20

Conv

  • set threshold for CI energy, CI vector and Residual vector of MRCISD, respectively. The default value is set as the following example.

Example:

Conv
1.d-8 1.d-6 1.d-8

ETHRES

  • set threshold for CI energy of H0. The default value is 1.d-8 .

InitHDav

  • Set 1 for initial vectors on Davidson diagonalization by largest coupling with energy lowest CSFs,which is default. Set 2 for initial vectors on Davidson diagonalization by low-lying CI Hamiltonian diagonal elements near by reference states. Set 3 for initial vectors on Davidson diagonalization by the residual vector of reference wavefunctions.

InitH0Dav

  • Set 1 for initial vectors of P space on Davidson diagonalization by largest coupling with energy lowest CSFs for the H0 diagonalization. Set 2 for initial vectors of P space on Davidson diagonalization by low-lying CI Hamiltonian diagonal elements near by reference CSFs for the H0 diagonalization, which is default.

FollowDav

  • If this keyword is specified in a MRCISD calculation, and if the $numgrad block is present, the numerical gradient calculation will use the MRCISD+Q energies. Otherwise the uncorrected MRCISD energies will be used.

Memory keywords

Nosavelp

  • set to calculate partial loops on each MRCI iteration individually. This leads to more MRCI calculation time but saves hard disk and should be used to the system with large active space.

NCISAVE

  • Maximum H0 dimension can save H0 matrix, which insteads of the old keyword of 'H0TRA'. The default value is 10000.

MAXREF

  • Maximum selected reference CSF number. The default value is 1000.

Example:

NODE 
 1000

NODE

  • Maximum DRT node number. The default value is 100000.

Example:

NODE 
 100000

WEI

  • Maximum DRT WEI number. The default value is 500000.

Example:

WEI
 500000

PLOOP

  • Maximum partial LOOP number. The default value is 500000.

Example:

PLOOP 
 500000

SETICF

  • Maximum partial internal CSFs number in active space. The default value is 500.

Example:

SETICF
 500

SETDXY

  • Maximum CI subspace in active space (DXY). The default value is 50000.

Example:

SETDXY
 50000

SETH0

  • Maximum reference CSF number. The default value is 500000.

Example:

SETH0
 500000

SETLOPU

  • Maximum Lopu number between double and active spaces. The default value is 2000.

Example:

SETH0
 500000

MAXLOOP

  • This keyword, alias 'Maxplp' has the function that maximum partial LOOP number for CI acceleration which is larger than or equal to keyword 'PLOOP' set value. The default value is 500000.

Example:

MAXLOOP
 500000

MAXPLP

  • This keyword, alias 'Maxloop' has the function that maximum partial LOOP number for CI acceleration which is larger than or equal to keyword 'PLOOP' set value. The default value is 500000.

Example:

MAXPLP
 500000

PLBLK

  • Maximum partial LOOP block number. The default value is 500000.

Example:

PLBLK
 500000

IC module keywords

UCCI

  • This keyword is set for un-contracted MRCISD.

Example:

 UCCI

VVCI

  • This keyword is set for contracted reference CSFs to zeroth-order wavefuctions, so that reference CSFs are not relaxed which is used together with the following contraction modes, in which reference CSFs are all relaxed by CI Hamiltonian diagonalization. The functional by this keyword is not recommended and needs testing. If use secondary states, SDSPT2 with 'dolan' or 'dylan' needs to be calculated in advance. Then the corresponding 'dolan' or 'dylan' needs to be input for icMRCI calculation.

Example: test069.inp

 VVCI

FCCI

  • Default for internal contraction module. This keyword is set for Fully internal Contraction module of CSFs, reference CSFs are not contracted for MRCISD calculation, while perturbation theory calculation all CI subspaces are internally contracted.

Example:

 FCCI

NICI

  • This keyword is set for one internal Contraction module of CSFs, only internal CI subspaces are not contracted.

Example:

 NICI

CWCI

  • This keyword is set for one internal Contraction module of CSFs, corresponding to keyword 'mrcic' in Molpro program for Celani-Werner (CW) contraction, where only CI subspaces VV, DV, DDV and VD in hole-particle symmetry are not contracted.

Example:

 CWCI

WKCI

  • This keyword is set for one internal Contraction module of CSFs, corresponding to keyword 'mrci' in Molpro program for Werner-Knowles (WK) contraction, where only CI subspaces with two electron excitation to external spaces are contracted.

Example:

 WKCI

SDCI

  • This keyword is set for one internal Contraction module of CSFs, the accuracy of which is more accurate than CWCI but less than WKCI. In contrast with WKCI module, CI subspaces with two electron excitation from hole space and meanwhile one electron excitation to external space are also contracted.

Example:

 SDCI

XDCI

  • This keyword is set for one internal Contraction module of CSFs, where XS(T), S(T)V and S(T)D are not contracted.

Example:

 XDCI

MRPT keywords

Comment:

  If no keyword is set for perturbation theory calculation in the following, xianci module will calculate MRCISD in default. 

Notice:

  The following methods use Fully internal contraction wavefunction (FCCI) as default, while NICI, CWCI, SDCI, WKCI modules should be set in turn for the case FCCI module fails.  

DEPENST

  • Using state-dependent Fock diagonal elements in Dyall Hamiltonian, default : state-average Fock diagonal elements .

Example:

 NEVPT2

NEVPT2

  • set for SS-NEVPT2 and MS-NEVPT2 calculations, where each reference state expands a specific CI space.

Example:

 NEVPT2

MR-NEVPT2

  • set for SS-NEVPT2 and MS-NEVPT2 calculations, where all reference states expand only one multi-states CI space.

Example:

 MR-NEVPT2

NEVPT3

  • set for SS-NEVPT3 calculation, where each reference state expands a specific CI space.

Example:

 NEVPT3

SDSPT2

  • set for SDSPT2 calculation, where all reference states expand only one multi-states CI space.

Example:

 SDSPT2

SDSCI

  • set for SDSCI calculation, where all reference states expand only one multi-states CI space.

Example:

 SDSCI

NOLAN

  • set for SDSPT2 and SDSCI calculations, where high-lying MCSCF wavefunction as Psi2 are used to generate Ps wavefunction in SDSPT2 and SDSCI.

DOLAN

  • set for SDSPT2 and SDSCI calculations, where Lanczos wavefunction as Psi2 are used to generate Ps wavefunction in SDSPT2 and SDSCI.

DYLAN

  • set for SDSPT2 and SDSCI calculations, where truncated psi(0)_i dynamically combinated Lanczos Psi2 by sum_i<psi(0)_i|H|Psi(1)> are used to generate Ps wavefunction in SDSPT2 and SDSCI.

DEPSI2

  • set threshold for the cutoff of the calculated number of H0 states, those of which are high-lying than the target states. The default value is 5 eV, users can set the threshold with unit of eV.

NDIMPS

  • set for SDSPT2 and SDSCI calculations, where CASSCF wavefunctions are used to produce Ps wavefunction in SDSPT2 and SDSCI.

Example:

 NDIMPS
  2   # two high-lying CASSCF wavefunctions are used to produce Ps wavefunction in SDSPT2 and SDSCI relative to reference wavefunctions.

Comment:

 If Keyword 'NDIMPS' are not set or set to zero and keyword 'NOLAN' are set, SDSPT2 or SDSCI has no Ps wavefunction. 

CBMRPT2

  • set for CB-MRPT2 calculation, where each reference state expands a specific CI space.

Example:

 CBMRPT2

MR-CBMRPT2

  • set for CB-MRPT2 calculations, where all reference states expand only one multi-states CI space.

Example:

 MR-CBMRPT2 

MR-CBMRPT3

  • set for CB-MRPT3 calculations, where all reference states expand only one multi-states CI space.

Example:

 MR-CBMRPT3 

Examples

Test Example 1

input:

$COMPASS 
Title
 C2H4 Molecule test run
Basis
 cc-pvdz
Geometry
 C             0.000000       1.386400       0.000000    
 C             0.000000      -1.386400       0.000000    
 C             2.099700       2.794200       0.000000    
 C            -2.099700      -2.794200       0.000000    
 H            -1.845200       2.307000       0.000000    
 H             1.845200      -2.307000       0.000000    
 H             3.968500       1.930200       0.000000    
 H            -3.968500      -1.930200       0.000000    
 H             2.015100       4.847500       0.000000    
 H            -2.015100      -4.847500       0.000000    
END geometry
Check
unit
bohr
$END

$xuanyuan
$end

$SCF
RHF
charge
 0
spin
 1
$END

$MCSCF
close
 7   0   0   5
active
 0   2   3   1
actele
 6
spin
 1
symmetry
 1
roots
 3 3 
 1 2 3 
 1 1 1 
mixci
 2  
 1 3
 2 1
 1 4 
ROOTPRT
 1
prtcri
0.1
guess
hforb
$END

$TRAINT
Frozen
 2 0 0 2 0 0 0 0 
Orbital
 mcorb
$END

$XIANCI
nroot
2
spin
1
symmetry
1
$END

$XIANCI
nroot
1
spin
3
symmetry
4
$END

Results:

========================= mcscf results ==============================
    State Averaged ci energy      -154.86258790

    root   1
    energy=     -154.98691206     exe(eV)=    0.0000


    root   2
    energy=     -154.73707954     exe(eV)=    6.7983


    root   3
    energy=     -154.86377210     exe(eV)=    3.3508

 
 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MCSCF:MCENERGY:     -154.9869121     -154.7370795     -154.8637721
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++
 
  End   MCSCF Calculation

========================= xianci results ==============================

=============================== For first type of CI with two singlet states ====================================

 Roots of Heff are calculated are listed below: 
 
                        ENE           ENE + Pople       ENE + App Pople       ENE + DAV           ENE + MEISS
  root   1       -155.45209027       -155.52854668       -155.52960628       -155.51383149       -155.51395190
  root   2       -155.19957647       -155.27731997       -155.27842584       -155.26200965       -155.26229526
               MRCISD energyies     Pople Correction  App Pople Correction  Davidson Correction  Meissner correction    

 =====================================================

 MRSDCI CALCULATION CONVERGED

 NROOT      MC ENERGY        CI ENERGY          CI DAV             DAVCOEF
   1     -154.98691206    -155.45209027      -155.51383149         0.867274
   2     -154.73707954    -155.19957647      -155.26200965         0.865008
         MCSCF energyies  MRCISD energyies Davidson Correction  Reference weight   
    
    root   1
    energy=     -155.45209027     exe(eV)=    0.0000


    root   2
    energy=     -155.19957647     exe(eV)=    6.8713

 
 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRCI:CIENERGY:     -155.4520903     -155.1995765
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

=============================== For second type of CI with one triplet state ====================================
 

 Roots of Heff are calculated are listed below: 
 
                        ENE           ENE + Pople       ENE + App Pople       ENE + DAV           ENE + MEISS
  root   1       -155.32503309       -155.40089070       -155.40194273       -155.38628185       -155.38640551
 
 =====================================================

 MRSDCI CALCULATION CONVERGED

 NROOT      MC ENERGY        CI ENERGY        CI DAV         DAVCOEF
   1     -154.86377210    -155.32503309    -155.38628185    0.867215

    root   1
    energy=     -155.32503309     exe(eV)=    0.0000

 
 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRCI:CIENERGY:     -155.3250331
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

Test Example 2

input:

$TRAINT
Frozen
 2 0 0 2 0 0 0 0 
Orbital
 mcorb
mrpt2
$END

$XIANCI
nroot
2
spin
1
symmetry
1
SDSPT2
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 NROOT   MC ENE        SS-NEVPT2 ENE   MS-NEVPT2 ENE     SDSPT2 ENE    SDSPT2+Q1 ENE   SDSPT2+Q2 ENE        SDSPT2+Q3 ENE       DAVCOEF
   1   -154.98691206   -155.47745410   -155.47745446   -155.41455599   -155.47503759   -155.47574313       -155.46512580        0.881748
   2   -154.73707954   -155.21961390   -155.21961354   -155.15793413   -155.21775988   -155.21846183       -155.20789974        0.881276
Energies:   MCSCF       SS-NEVPT2       MS-NEVPT2         SDSPT2    Pople Correction App Pople Correction Davidson Correction Ref. Weight 

Test Example 3

input:

$XIANCI
nroot
2
spin
1
symmetry
1
SDSCI
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 NROOT   MC ENE        SS-NEVPT2 ENE   MS-NEVPT2 ENE     SDSPT2 ENE    SDSPT2+Q1 ENE   SDSPT2+Q2 ENE   SDSPT2+Q3 ENE   DAVCOEF
   1   -154.98691206   -155.47745410   -155.47745446   -155.44006672   -155.51313986   -155.51413050   -155.49935009   0.869176
   2   -154.73707954   -155.21961390   -155.21961354   -155.18843582   -155.26361048   -155.26466844   -155.24894428   0.865941
Energies:   MCSCF       SS-NEVPT2       MS-NEVPT2         SDSCI  Pople Correction App Pople Correction Davidson Correction Ref. Weight 

Test Example 4

input:

$XIANCI
nroot
2
spin
1
symmetry
1
NEVPT3
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 NROOT        MC ENERGY       SS-NEVPT2 ENERGY    MS-NEVPT2 ENERGY    SS-NEVPT3 ENERGY    MS-NEVPT3 ENERGY
   1       -154.98691206       -155.47742562       -155.47742574       -155.51364676       -155.51364676
   2       -154.73707954       -155.21952164       -155.21952152       -155.26247430       -155.26247430
Energies:     MCSCF             SS-NEVPT2            MS-NEVPT2          SS-NEVPT3            Useless

Test Example 5

input:

$XIANCI
nroot
2
spin
1
symmetry
1
CBMRPT2
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRPT2:PT2ENERGY:     -155.5496768     -155.2931467
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

Test Example 6

input:

$XIANCI
nroot
2
spin
1
symmetry
1
MR-CBMRPT3
$END

Results:

=============================== For first type of CI with two singlet states ====================================

 ++++++++  DATA CHECK +++++++++++++++++++++++++++++++++
  CHECKDATA:MRPT3:PT3ENERGY:     -155.5176000     -155.2629435
 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++

xianci (last edited 2024-11-28 15:07:40 by bsuo)