Xi'an-CI
Contents
-
Xi'an-CI
- Corresponding email
- References
-
General keywords
- Electron
- nroot
- Symmetry
- Spin
- core
- Inactive
- Active
- Maxiter
- NODE
- WEI
- PLOOP
- SETICF
- SETDXY
- SETH0
- MAXLOOP
- PLBLK
- CITHR
- Conv
- UCCI
- FCCI
- NICI
- CWCI
- WKCI
- SDCI
- NEVPT2
- MR-NEVPT2
- NEVPT3
- SDSPT2
- SDSCI
- NOLAN
- NDIMPS
- CBMRPT2
- MR-CBMRPT2
- MR-CBMRPT3
- Test Example 1
- Test Example 2
- Test Example 3
- Test Example 4
- Test Example 5
- Test Example 6
Xi’an-CI program generates Multi Reference SDCI (MRCISD) wavefunctions (including internal contracted MRCISD on several different level accuracy), N-electron Valence states Second Order Perturbation Theory (including multi-state NEVPT2 (MS-NEVPT2), N-electron Valence states Third Order Perturbation Theory (NEVPT3), Static-Dynamic-Static Second Order Perturbation Theory (SDSPT2), Static-Dynamic-Static Configuration Interaction (SDSCI), Configuration Based Multi Reference Second Order Perturbation Theory (CB-MRPT2) and Configuration Based Multi Reference Third Order Perturbation Theory (CB-MRPT3). This program is based on hole-particle symmetry based and GUGA for the computation of CI matrix elements. The program can calculate several eigenvectors simultaneously. Xi’an-CI program is written by Zhenyi Wen, Yubin Wang, Zhengting Gan, Bingbing Suo and Yibo Lei (Institute of Modern Physics, Northwest University, China).
Corresponding email
wzy@nwu.edu.cn (Prof. Zhenyi Wen) yubin_wang@hotmail.com (Prof. Yubin Wang) bsuo@nwu.edu.cn (Prof. Bingbing Suo) leiyb@nwu.edu.cn (Associate Prof. Yibo Lei)
References
Xi’an-CI Program review 1. B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018). ucMRCISD program 1. Y. Wang, G. Zhai, B. Suo, Z. Gan, Z. Wen, Chem. Phys. Lett., 375, 134 (2003). 2. Y. Wang, Z. Wen, Z. Zhang, Q. Du, J. Comput. Chem, 13, 187 (1992). 3. Y. Lei, B. Suo, Y. Dou, Y. Wang, Z. Wen, J. Comput. Chem, 31, 1752 (2010). 4. B. Suo, G. Zhai, Y. Wang, Z. Wen, X. Hu, L. Li, J. Comput. Chem, 26, 88 (2005). 5. Z. Gan, K. Su, Y. Wang, Z. Wen, Sci. China Ser. B-Chem, 42, 43 (1999). icMRCISD program 1. Y. Wang, H. Han, Y. Lei, B. Suo, H. Zhu, Q. Song, Z. Wen, J. Chem. Phys., 141, 164114 (2014). 2. B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018).. MS-NEVPT2 program 1. C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.P.Malrieu, J. Chem. Phys., 114, 10252 (2001). 2. Y. Lei, W. Liu, M. R. Hoffmann, Mol. Phys., 115, 2696 (2017). 3. B. Suo, Y. Lei, H. Han, Y. Wang, Mol. Phys., 116, 1051 (2018). SDSPT2 program 1. Y. Lei, W. Liu, M. R. Hoffmann, Mol. Phys., 115, 2696 (2017). 2. W. Liu, M.R. Hoffmann, Theor. Chem. Acc., 133, 1481 (2014). 3. W. Liu, M.R. Hoffmann, J. Chem. Theory Comput., 12, 1169 (2016); 12, 3000(E) (2016). CB-MRPT2 program 1. Y. Lei, Y. Wang, H. Han, Q. Song, B. Suo, Z. Wen, J. Chem. Phys., 137, 144102 (2012). 2. A. Li, H. Han, B. Suo, Y. Wang, Z. Wen, Sci. China CHEMISTRY, 53. 933 (2010). 3. Y. Wang, Z. Gan, K. Suo, Z, Wen, Sci. China Ser. B-Chem, 43, 567 (2000).
General keywords
Comment:
If no keyword is used, xianci module will read information from mcscf and traint modules and then calculate Fully internal contracted MRCISD.
Electron
- CI effective electron Number without electrons of frozen MOs in traint module for MO integral transformation
Example:
Electron 30
nroot
- State Number, CASSCF with MixCI method needs to input state number of target CI type.
Example:
Symmetry
- Symmetry of the target state, CASSCF with MixCI method needs to input irrep of target CI type.
Example:
Spin
- Spin multiplicity (2S+1), CASSCF with MixCI method needs to input Spin multiplicity of target CI type.
core
- Number of frozen orbitals in each irreps, which must be missing or set to zero in each irreps if it has frozen MOs in traint module.
Example:
Inactive
- Number of inactive orbitals in each irreps.
Example:
Active
- Number of active orbitals in each irreps.
Example:
Comment:
If the above keywords are not set. the mcscf and traint modules information will be used.
Maxiter
- Maximum iteration Number of MRCISD. The default value is 500.
Example:
Maxiter 50
NODE
- Maximum DRT node number. The default value is 100000.
Example:
NODE 100000
WEI
- Maximum DRT WEI number. The default value is 500000.
Example:
WEI 500000
PLOOP
- Maximum partial LOOP number. The default value is 500000.
Example:
PLOOP 500000
SETICF
- Maximum partial internal CSFs number in active space. The default value is 500.
Example:
SETICF 500
SETDXY
- Maximum CI subspace in active space (DXY). The default value is 50000.
Example:
SETDXY 50000
SETH0
- Maximum reference CSF number. The default value is 500000.
Example:
SETH0 500000
MAXLOOP
- Maximum partial LOOP number for CI acceleration which is larger than or equal to keyword 'PLOOP' set value. The default value is 500000.
Example:
MAXLOOP 500000
PLBLK
- Maximum partial LOOP block number. The default value is 500000.
Example:
PLBLK 500000
CITHR
- set threshold for CI vector print. The default value is 0.05.
Example:
CITHR 0.1
Conv
- set threshold for CI energy, CI vector and Residual vector of MRCISD, respectively. The default value is set as the following example.
Example:
Conv 1.d-8 1.d-6 1.d-8
UCCI
- This keyword is set for un-contracted MRCISD.
Example:
UCCI
FCCI
- Default for internal contraction module. This keyword is set for Fully internal Contraction module of CSFs, reference CSFs are not contracted for MRCISD calculation, while perturbation theory calculation all CI subspaces are internally contracted.
Example:
FCCI
NICI
- This keyword is set for one internal Contraction module of CSFs, only internal CI subspaces are not contracted.
Example:
NICI
CWCI
- This keyword is set for one internal Contraction module of CSFs, corresponding to keyword 'mrcic' in Molpro program for Celani-Werner (CW) contraction, where only CI subspaces VV, DV, DDV and VD in hole-particle symmetry are not contracted.
Example:
CWCI
WKCI
- This keyword is set for one internal Contraction module of CSFs, corresponding to keyword 'mrci' in Molpro program for Werner-Knowles (WK) contraction, where only CI subspaces with two electron excitation to external spaces are contracted.
Example:
WKCI
SDCI
- This keyword is set for one internal Contraction module of CSFs, the accuracy of which is more accurate than CWCI but less than WKCI. In contrast with WKCI module, CI subspaces with two electron excitation from hole space and meanwhile one electron excitation to external space are also contracted.
Example:
SDCI
Comment:
If no keyword is set for perturbation theory calculation in the following, xianci module will calculate MRCISD in default.
NEVPT2
- set for SS-NEVPT2 and MS-NEVPT2 calculations, where each reference state expands a specific CI space.
Example:
NEVPT2
MR-NEVPT2
- set for SS-NEVPT2 and MS-NEVPT2 calculations, where all reference states expand only one multi-states CI space.
Example:
MR-NEVPT2
NEVPT3
- set for SS-NEVPT3 calculation, where each reference state expands a specific CI space.
Example:
NEVPT3
SDSPT2
- set for SDSPT2 calculation, where all reference states expand only one multi-states CI space.
Example:
SDSPT2
SDSCI
- set for SDSCI calculation, where all reference states expand only one multi-states CI space.
Example:
SDSCI
NOLAN
- set for SDSPT2 and SDSCI calculations, where no Lanczos wavefunction is used to produce Ps wavefunction in SDSPT2 and SDSCI.
Example:
NOLAN
NDIMPS
- set for SDSPT2 and SDSCI calculations, where CASSCF wavefunctions are used to produce Ps wavefunction in SDSPT2 and SDSCI.
Example:
NDIMPS 2 # two high-lying CASSCF wavefunctions are used to produce Ps wavefunction in SDSPT2 and SDSCI relative to reference wavefunctions.
Comment:
If Keyword 'NDIMPS' are not set or set to zero and keyword 'NOLAN' are set, SDSPT2 or SDSCI has no Ps wavefunction.
CBMRPT2
- set for CB-MRPT2 calculation, where each reference state expands a specific CI space.
Example:
CBMRPT2
MR-CBMRPT2
- set for CB-MRPT2 calculations, where all reference states expand only one multi-states CI space.
Example:
MR-CBMRPT2
MR-CBMRPT3
- set for CB-MRPT3 calculations, where all reference states expand only one multi-states CI space.
Example:
MR-CBMRPT3
Test Example 1
input:
$COMPASS Title C2H4 Molecule test run Basis cc-pvdz Geometry C 0.000000 1.386400 0.000000 C 0.000000 -1.386400 0.000000 C 2.099700 2.794200 0.000000 C -2.099700 -2.794200 0.000000 H -1.845200 2.307000 0.000000 H 1.845200 -2.307000 0.000000 H 3.968500 1.930200 0.000000 H -3.968500 -1.930200 0.000000 H 2.015100 4.847500 0.000000 H -2.015100 -4.847500 0.000000 END geometry Check unit bohr $END $xuanyuan $end $SCF RHF charge 0 spin 1 $END $MCSCF close 7 0 0 5 active 0 2 3 1 actele 6 spin 1 symmetry 1 roots 3 3 1 2 3 1 1 1 mixci 2 1 3 2 1 1 4 ROOTPRT 1 prtcri 0.1 guess hforb $END $TRAINT Frozen 2 0 0 2 0 0 0 0 Orbital mcorb $END $XIANCI nroot 2 spin 1 symmetry 1 $END $XIANCI nroot 1 spin 3 symmetry 4 $END
Results:
========================= mcscf results ============================== State Averaged ci energy -154.86258790 root 1 energy= -154.98691206 exe(eV)= 0.0000 root 2 energy= -154.73707954 exe(eV)= 6.7983 root 3 energy= -154.86377210 exe(eV)= 3.3508 ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++ CHECKDATA:MCSCF:MCENERGY: -154.9869121 -154.7370795 -154.8637721 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++ End MCSCF Calculation ========================= xianci results ============================== =============================== For first type of CI with two singlet states ==================================== Roots of Heff are calculated are listed below: ENE ENE + Pople ENE + App Pople ENE + DAV ENE + MEISS root 1 -155.45209027 -155.52854668 -155.52960628 -155.51383149 -155.51395190 root 2 -155.19957647 -155.27731997 -155.27842584 -155.26200965 -155.26229526 MRCISD energyies Pople Correction App Pople Correction Davidson Correction Meissner correction ===================================================== MRSDCI CALCULATION CONVERGED NROOT MC ENERGY CI ENERGY CI DAV DAVCOEF 1 -154.98691206 -155.45209027 -155.51383149 0.867274 2 -154.73707954 -155.19957647 -155.26200965 0.865008 MCSCF energyies MRCISD energyies Davidson Correction Reference weight root 1 energy= -155.45209027 exe(eV)= 0.0000 root 2 energy= -155.19957647 exe(eV)= 6.8713 ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++ CHECKDATA:MRCI:CIENERGY: -155.4520903 -155.1995765 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++ =============================== For second type of CI with one triplet state ==================================== Roots of Heff are calculated are listed below: ENE ENE + Pople ENE + App Pople ENE + DAV ENE + MEISS root 1 -155.32503309 -155.40089070 -155.40194273 -155.38628185 -155.38640551 ===================================================== MRSDCI CALCULATION CONVERGED NROOT MC ENERGY CI ENERGY CI DAV DAVCOEF 1 -154.86377210 -155.32503309 -155.38628185 0.867215 root 1 energy= -155.32503309 exe(eV)= 0.0000 ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++ CHECKDATA:MRCI:CIENERGY: -155.3250331 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++
Test Example 2
input:
$XIANCI nroot 2 spin 1 symmetry 1 SDSPT2 $END
Results:
=============================== For first type of CI with two singlet states ==================================== NROOT MC ENE SS-NEVPT2 ENE MS-NEVPT2 ENE SDSPT2 ENE SDSPT2+Q1 ENE SDSPT2+Q2 ENE SDSPT2+Q3 ENE DAVCOEF 1 -154.98691206 -155.47745410 -155.47745446 -155.41455599 -155.47503759 -155.47574313 -155.46512580 0.881748 2 -154.73707954 -155.21961390 -155.21961354 -155.15793413 -155.21775988 -155.21846183 -155.20789974 0.881276 Energies: MCSCF SS-NEVPT2 MS-NEVPT2 SDSPT2 Pople Correction App Pople Correction Davidson Correction Ref. Weight
Test Example 3
input:
$XIANCI nroot 2 spin 1 symmetry 1 SDSCI $END
Results:
=============================== For first type of CI with two singlet states ==================================== NROOT MC ENE SS-NEVPT2 ENE MS-NEVPT2 ENE SDSPT2 ENE SDSPT2+Q1 ENE SDSPT2+Q2 ENE SDSPT2+Q3 ENE DAVCOEF 1 -154.98691206 -155.47745410 -155.47745446 -155.44006672 -155.51313986 -155.51413050 -155.49935009 0.869176 2 -154.73707954 -155.21961390 -155.21961354 -155.18843582 -155.26361048 -155.26466844 -155.24894428 0.865941 Energies: MCSCF SS-NEVPT2 MS-NEVPT2 SDSCI Pople Correction App Pople Correction Davidson Correction Ref. Weight
Test Example 4
input:
$XIANCI nroot 2 spin 1 symmetry 1 NEVPT3 $END
Results:
=============================== For first type of CI with two singlet states ==================================== NROOT MC ENERGY SS-NEVPT2 ENERGY MS-NEVPT2 ENERGY SS-NEVPT3 ENERGY MS-NEVPT3 ENERGY 1 -154.98691206 -155.47742562 -155.47742574 -155.51364676 -155.51364676 2 -154.73707954 -155.21952164 -155.21952152 -155.26247430 -155.26247430 Energies: MCSCF SS-NEVPT2 MS-NEVPT2 SS-NEVPT3 Useless
Test Example 5
input:
$XIANCI nroot 2 spin 1 symmetry 1 CBMRPT2 $END
Results:
=============================== For first type of CI with two singlet states ==================================== ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++ CHECKDATA:MRPT2:PT2ENERGY: -155.5496768 -155.2931467 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++
Test Example 6
input:
$XIANCI nroot 2 spin 1 symmetry 1 MR-CBMRPT3 $END
Results:
=============================== For first type of CI with two singlet states ==================================== ++++++++ DATA CHECK +++++++++++++++++++++++++++++++++ CHECKDATA:MRPT3:PT3ENERGY: -155.5176000 -155.2629435 ++++++++++ END DATA CHECK ++++++++++++++++++++++++++++